Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
Nat Immunol ; 23(6): 868-877, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618829

RESUMO

Impaired chronic viral and tumor clearance has been attributed to CD8+ T cell exhaustion, a differentiation state in which T cells have reduced and altered effector function that can be partially reversed upon blockade of inhibitory receptors. The role of the exhaustion program and transcriptional networks that control CD8+ T cell function and fate in autoimmunity is not clear. Here we show that intra-islet CD8+ T cells phenotypically, transcriptionally, epigenetically and metabolically possess features of canonically exhausted T cells, yet maintain important differences. This 'restrained' phenotype can be perturbed and disease accelerated by CD8+ T cell-restricted deletion of the inhibitory receptor lymphocyte activating gene 3 (LAG3). Mechanistically, LAG3-deficient CD8+ T cells have enhanced effector-like functions, trafficking to the islets, and have a diminished exhausted phenotype, highlighting a physiological role for an exhaustion program in limiting autoimmunity and implicating LAG3 as a target for autoimmune therapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Autoimunidade , Humanos , Neoplasias/patologia , Fenótipo
2.
Cell ; 173(3): 624-633.e8, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29656892

RESUMO

CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We validate this gene expression signature in an independent anti-CTLA-4-treated cohort and show its specificity to the CTLA-4 pathway with two independent anti-PD-1-treated cohorts. Autophagy, a process critical for optimal anti-cancer immunity, has previously been shown to be suppressed by the MAGE-TRIM28 ubiquitin ligase in vitro. We now show that the expression of the key autophagosome component LC3B and other activators of autophagy are negatively associated with MAGE-A protein levels in human melanomas, including samples from patients with resistance to CTLA-4 blockade. Our findings implicate autophagy suppression in resistance to CTLA-4 blockade in melanoma, suggesting exploitation of autophagy induction for potential therapeutic synergy with CTLA-4 inhibitors.


Assuntos
Antígeno CTLA-4/genética , Antígeno CTLA-4/imunologia , Epigênese Genética , Mutação em Linhagem Germinativa , Neoplasias/genética , Neoplasias/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Autofagia , Linhagem Celular Tumoral , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Humanos , Imunoterapia , Ipilimumab/farmacologia , Masculino , Melanoma/genética , Melanoma/imunologia , Antígenos Específicos de Melanoma/genética , Antígenos Específicos de Melanoma/imunologia , Camundongos , Camundongos Transgênicos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia
3.
Cell ; 162(6): 1242-56, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26359984

RESUMO

Therapeutic antibodies targeting programmed cell death 1 (PD-1) activate tumor-specific immunity and have shown remarkable efficacy in the treatment of melanoma. Yet, little is known about tumor cell-intrinsic PD-1 pathway effects. Here, we show that murine and human melanomas contain PD-1-expressing cancer subpopulations and demonstrate that melanoma cell-intrinsic PD-1 promotes tumorigenesis, even in mice lacking adaptive immunity. PD-1 inhibition on melanoma cells by RNAi, blocking antibodies, or mutagenesis of melanoma-PD-1 signaling motifs suppresses tumor growth in immunocompetent, immunocompromised, and PD-1-deficient tumor graft recipient mice. Conversely, melanoma-specific PD-1 overexpression enhances tumorigenicity, as does engagement of melanoma-PD-1 by its ligand, PD-L1, whereas melanoma-PD-L1 inhibition or knockout of host-PD-L1 attenuate growth of PD-1-positive melanomas. Mechanistically, the melanoma-PD-1 receptor modulates downstream effectors of mTOR signaling. Our results identify melanoma cell-intrinsic functions of the PD-1:PD-L1 axis in tumor growth and suggest that blocking melanoma-PD-1 might contribute to the striking clinical efficacy of anti-PD-1 therapy.


Assuntos
Melanoma/genética , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais , Animais , Antineoplásicos/administração & dosagem , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias
4.
Cell ; 150(6): 1135-46, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22980977

RESUMO

DNA methylation at the 5 position of cytosine (5-mC) is a key epigenetic mark that is critical for various biological and pathological processes. 5-mC can be converted to 5-hydroxymethylcytosine (5-hmC) by the ten-eleven translocation (TET) family of DNA hydroxylases. Here, we report that "loss of 5-hmC" is an epigenetic hallmark of melanoma, with diagnostic and prognostic implications. Genome-wide mapping of 5-hmC reveals loss of the 5-hmC landscape in the melanoma epigenome. We show that downregulation of isocitrate dehydrogenase 2 (IDH2) and TET family enzymes is likely one of the mechanisms underlying 5-hmC loss in melanoma. Rebuilding the 5-hmC landscape in melanoma cells by reintroducing active TET2 or IDH2 suppresses melanoma growth and increases tumor-free survival in animal models. Thus, our study reveals a critical function of 5-hmC in melanoma development and directly links the IDH and TET activity-dependent epigenetic pathway to 5-hmC-mediated suppression of melanoma progression, suggesting a new strategy for epigenetic cancer therapy.


Assuntos
Citosina/análogos & derivados , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Nevo/genética , 5-Metilcitosina/análogos & derivados , Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases , Estudo de Associação Genômica Ampla , Humanos , Isocitrato Desidrogenase/genética , Melanócitos/metabolismo , Melanoma/patologia , Nevo/patologia , Proteínas Proto-Oncogênicas/genética
5.
J Allergy Clin Immunol ; 154(1): 143-156, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38185418

RESUMO

BACKGROUND: Dedicator of cytokinesis 8 (DOCK8)-deficient patients have severe eczema, elevated IgE, and eosinophilia, features of atopic dermatitis (AD). OBJECTIVE: We sought to understand the mechanisms of eczema in DOCK8 deficiency. METHODS: Skin biopsy samples were characterized by histology, immunofluorescence microscopy, and gene expression. Skin barrier function was measured by transepidermal water loss. Allergic skin inflammation was elicited in mice by epicutaneous sensitization with ovalbumin (OVA) or cutaneous application of Staphylococcus aureus. RESULTS: Skin lesions of DOCK8-deficient patients exhibited type 2 inflammation, and the patients' skin was colonized by Saureus, as in AD. Unlike in AD, DOCK8-deficient patients had a reduced FOXP3:CD4 ratio in their skin lesions, and their skin barrier function was intrinsically intact. Dock8-/- mice exhibited reduced numbers of cutaneous T regulatory (Treg) cells and a normal skin barrier. Dock8-/- and mice with an inducible Dock8 deletion in Treg cells exhibited increased allergic skin inflammation after epicutaneous sensitization with OVA. DOCK8 was shown to be important for Treg cell stability at sites of allergic inflammation and for the generation, survival, and suppressive activity of inducible Treg cells. Adoptive transfer of wild-type, but not DOCK8-deficient, OVA-specific, inducible Treg cells suppressed allergic inflammation in OVA-sensitized skin of Dock8-/- mice. These mice developed severe allergic skin inflammation and elevated serum IgE levels after topical exposure to Saureus. Both were attenuated after adoptive transfer of WT but not DOCK8-deficient Treg cells. CONCLUSION: Treg cell dysfunction increases susceptibility to allergic skin inflammation in DOCK8 deficiency and synergizes with cutaneous exposure to Saureus to drive eczema in DOCK8 deficiency.


Assuntos
Eczema , Fatores de Troca do Nucleotídeo Guanina , Camundongos Knockout , Pele , Staphylococcus aureus , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/imunologia , Eczema/imunologia , Staphylococcus aureus/imunologia , Humanos , Camundongos , Pele/imunologia , Pele/patologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Dermatite Atópica/imunologia
6.
Am J Transplant ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39413877

RESUMO

Face transplantation has emerged as reconstructive option for the most challenging facial deformities. A comprehensive analysis of functional outcomes, medical complications, incidence of malignancy, and chronic rejection in face transplantation recipients over an extended follow-up period has not yet been published leaving a notable gap in the literature. We retrospectively collected data of morbidity, rejection, vasculopathy, metabolic side effects, as well as functional outcome of sensory return, facial motor function, and speech from nine patients who underwent face transplantation at Brigham and Women´s Hospital (Boston, USA) between 2009 - 2020. The median follow-up was 120 months (54 - 154 months). Four grafts (40%) developed signs of clinical and histopathological chronic rejection without evidence of vasculopathy on computer tomography angiograms. Sensory return assessed with WEST-Monofilament showed an increase in six patients (66.7%) and facial expression analysis showed improvement throughout the whole cohort at their most recent follow up. Speech intelligibility was stable or increasing for five patients (55.6%). In conclusion, the long-term outcomes reveal promising results in terms of overall graft retention, and functional recovery. Metabolic, malignant, and infectious complications, as well as graft rejection episodes are expected to occur in this population, and some may be related to patient's age and lifestyle.

7.
J Anat ; 245(2): 217-230, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38624036

RESUMO

Radial dysplasia (RD) is a congenital upper limb birth defect that presents with changes to the upper limb anatomy, including a shortened or absent radius, bowed ulna, thumb malformations, a radially deviated hand and a range of muscle and tendon malformations, including absent or abnormally shaped muscle bundles. Current treatments to address wrist instability caused by a shortened or absent radius frequently require an initial soft tissue distraction intervention followed by a wrist stabilisation procedure. Following these surgical interventions, however, recurrence of the wrist deviation remains a common, long-term problem following treatment. The impact of the abnormal soft connective tissue (muscle and tendon) anatomy on the clinical presentation of RD and the complications following surgery are not understood. To address this, we have examined the muscle, fascia and the fascial irregular connective tissue (ICT) fibroblasts found within soft connective tissues, from RD patients. We show that ICT fibroblasts isolated from RD patients are functionally abnormal when compared to the same cells isolated from control patients and secrete a relatively disordered extracellular matrix (ECM). Furthermore, we show that ICT fibroblast dysfunction is a unifying feature found in RD patients, even when the RD clinical presentation is caused by distinct genetic syndromes.


Assuntos
Tecido Conjuntivo , Fibroblastos , Músculo Esquelético , Humanos , Fibroblastos/patologia , Tecido Conjuntivo/patologia , Músculo Esquelético/anormalidades , Músculo Esquelético/patologia , Masculino , Feminino , Rádio (Anatomia)/anormalidades , Rádio (Anatomia)/patologia
8.
Nature ; 559(7715): 637-641, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30022161

RESUMO

Diabetes is a complex metabolic syndrome that is characterized by prolonged high blood glucose levels and frequently associated with life-threatening complications1,2. Epidemiological studies have suggested that diabetes is also linked to an increased risk of cancer3-5. High glucose levels may be a prevailing factor that contributes to the link between diabetes and cancer, but little is known about the molecular basis of this link and how the high glucose state may drive genetic and/or epigenetic alterations that result in a cancer phenotype. Here we show that hyperglycaemic conditions have an adverse effect on the DNA 5-hydroxymethylome. We identify the tumour suppressor TET2 as a substrate of the AMP-activated kinase (AMPK), which phosphorylates TET2 at serine 99, thereby stabilizing the tumour suppressor. Increased glucose levels impede AMPK-mediated phosphorylation at serine 99, which results in the destabilization of TET2 followed by dysregulation of both 5-hydroxymethylcytosine (5hmC) and the tumour suppressive function of TET2 in vitro and in vivo. Treatment with the anti-diabetic drug metformin protects AMPK-mediated phosphorylation of serine 99, thereby increasing TET2 stability and 5hmC levels. These findings define a novel 'phospho-switch' that regulates TET2 stability and a regulatory pathway that links glucose and AMPK to TET2 and 5hmC, which connects diabetes to cancer. Our data also unravel an epigenetic pathway by which metformin mediates tumour suppression. Thus, this study presents a new model for how a pernicious environment can directly reprogram the epigenome towards an oncogenic state, offering a potential strategy for cancer prevention and treatment.


Assuntos
Adenilato Quinase/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , DNA/química , DNA/metabolismo , Metilação de DNA , Diabetes Mellitus/genética , Dioxigenases , Estabilidade Enzimática , Epigênese Genética , Hemoglobinas Glicadas/análise , Humanos , Hiperglicemia/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fosforilação , Fosfosserina/metabolismo , Especificidade por Substrato , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Am J Transplant ; 23(7): 1058-1061, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37037378

RESUMO

Vascularized composite allografts (VCAs) of faces and extremities are subject to chronic rejection that is incompletely understood. Here we report on immunoproteomic evaluation of a full facial VCA removed 88 months after transplantation due to chronic rejection. CD8-positive T cells of donor (graft) origin infiltrate deep intragraft arteries in apposition to degenerating endothelium of chimeric recipient origin in association with arteriosclerotic alterations. Digital spatial proteomic profiling highlighted proteins expressed by activated cytotoxic T cells and macrophages as well as pathway components involved in atherogenic responses, including Indoleamine 2,3-Dioxygenase 1 (IDO1) and Stimulator of Interferon Response CGAMP Interactor (STING). Chronic facial VCA rejection thus involves T cell/macrophage-mediated accelerated arteriosclerosis not normally represented in punch biopsies and potentially driven by persistent graft-resident effector T cells and recipient target endothelium that chimerically repopulates graft arteries.


Assuntos
Aloenxertos Compostos , Transplante de Face , Alotransplante de Tecidos Compostos Vascularizados , Sobrevivência de Enxerto , Proteômica , Aloenxertos Compostos/transplante , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/patologia
10.
Am J Transplant ; 23(4): 549-558, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36740193

RESUMO

Face transplantation is a life-changing procedure for patients with severe composite facial defects. However, it is hampered by high acute rejection rates due to the immunogenicity of skin allograft and toxicity linked to high doses of immunosuppression. To reduce immunosuppression-associated complications, we, for the first time in face transplant recipients, used low-dose interleukin 2 (IL-2) therapy to expand regulatory T cells (Tregs) in vivo and to enhance immune modulation, under close immunological monitoring of peripheral blood and skin allograft. Low-dose IL-2 achieved a sustained expansion (∼4-fold to 5-fold) of circulating Tregs and a reduction (∼3.5-fold) of B cells. Post-IL-2 Tregs exhibited greater suppressive function, characterized by higher expression of TIM-3 and LAG3co-inhibitory molecules. In the skin allograft, Tregs increased after low-dose IL-2 therapy. IL-2 induced a distinct molecular signature in the allograft with reduced cytotoxicity-associated genes (granzyme B and perforin). Two complications were observed during the trial: one rejection event and an episode of autoimmune hemolytic anemia. In summary, this initial experience demonstrated that low-dose IL-2 therapy was not only able to promote immune regulation in face transplant recipients but also highlighted challenges related to its narrow therapeutic window. More specific targeted Treg expansion strategies are needed to translate this approach to the clinic.


Assuntos
Transplante de Face , Interleucina-2 , Humanos , Rejeição de Enxerto , Interleucina-2/administração & dosagem , Interleucina-2/imunologia , Projetos Piloto , Linfócitos T Reguladores
11.
Immunity ; 41(4): 579-91, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25308334

RESUMO

Atg16L1 mediates the cellular degradative process of autophagy and is considered a critical regulator of inflammation based on its genetic association with inflammatory bowel disease. Here we find that Atg16L1 deficiency leads to an exacerbated graft-versus-host disease (GVHD) in a mouse model of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Atg16L1-deficient allo-HSCT recipients with GVHD displayed increased T cell proliferation due to increased dendritic cell (DC) numbers and costimulatory molecule expression. Reduced autophagy within DCs was associated with lysosomal abnormalities and decreased amounts of A20, a negative regulator of DC activation. These results broaden the function of Atg16L1 and the autophagy pathway to include a role in limiting a DC-mediated response during inflammatory disease, such as GVHD.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteínas de Transporte/imunologia , Células Dendríticas/imunologia , Doença Enxerto-Hospedeiro/imunologia , Animais , Autofagia/imunologia , Proteínas Relacionadas à Autofagia , Antígeno B7-1/biossíntese , Antígeno B7-2/biossíntese , Antígenos CD40/biossíntese , Proteínas de Transporte/genética , Proliferação de Células , Células Cultivadas , Colite/imunologia , Cisteína Endopeptidases/biossíntese , Modelos Animais de Doenças , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Transplante de Células-Tronco Hematopoéticas , Proteínas de Homeodomínio/genética , Proteínas Imediatamente Precoces/biossíntese , Inflamação/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Ativação Linfocitária/imunologia , Lisossomos/patologia , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Transplante Homólogo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa
12.
EMBO Rep ; 22(5): e51120, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33779025

RESUMO

Replication stress, a major cause of genome instability in cycling cells, is mainly prevented by the ATR-dependent replication stress response pathway in somatic cells. However, the replication stress response pathway in embryonic stem cells (ESCs) may be different due to alterations in cell cycle phase length. The transcription factor MYBL2, which is implicated in cell cycle regulation, is expressed a hundred to a thousand-fold more in ESCs compared with somatic cells. Here we show that MYBL2 activates ATM and suppresses replication stress in ESCs. Consequently, loss of MYBL2 or inhibition of ATM or Mre11 in ESCs results in replication fork slowing, increased fork stalling and elevated origin firing. Additionally, we demonstrate that inhibition of CDC7 activity rescues replication stress induced by MYBL2 loss and ATM inhibition, suggesting that uncontrolled new origin firing may underlie the replication stress phenotype resulting from loss/inhibition of MYBL2 and ATM. Overall, our study proposes that in addition to ATR, a MYBL2-MRN-ATM replication stress response pathway functions in ESCs to control DNA replication initiation and prevent genome instability.


Assuntos
Proteínas de Ciclo Celular , Células-Tronco Pluripotentes , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Pluripotentes/metabolismo
13.
Orbit ; 42(5): 545-547, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35297720

RESUMO

The authors present a case of acute bilateral orbital myositis occurring 24 hours after the administration of the mRNA1273 vaccination for COVID 19. The patient was presented with right proptosis, with orbital imaging demonstrating bilateral enlargement of all the extraocular muscles. Serological investigation did not reveal a precipitating cause or underlying disease process. The presenting features resolved entirely following treatment with methylprednisolone and the patient remains asymptomatic.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Miosite Orbital , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Músculos Oculomotores/diagnóstico por imagem , Miosite Orbital/diagnóstico por imagem , Miosite Orbital/tratamento farmacológico , Miosite Orbital/etiologia , Tomografia Computadorizada por Raios X , Vacinação
14.
Br J Haematol ; 197(1): 97-109, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35118652

RESUMO

Sickle cell disease (SCD) is a genetic disorder that affects millions around the world. Enhancement of fetal γ-globin levels and fetal haemoglobin (HbF) production in SCD patients leads to diminished severity of many clinical features of the disease. We recently identified the transcriptional co-activator PGC-1α as a new protein involved in the regulation of the globin genes. Here, we report that upregulation of PGC-1α by infection with a lentivirus expressing PGC-1α or by the small-molecule PGC-1α agonist ZLN005 in human primary erythroid progenitor CD34+ cells induces both fetal γ-globin mRNA and protein expression as well as the percentage of HbF-positive cell (F cells) without significantly affecting cell proliferation and differentiation. We further found that the combination of ZLN005 and hydroxyurea (hydroxycarbamide) exhibited an additive effect on the expression of γ-globin and the generation of F cells from cultured CD34+ cells. In addition, ZLN005 induced robust expression of the murine embryonic ßh1-globin gene and to a lesser extent, human γ-globin gene expression in sickle mice. These findings suggest that activation of PGC-1α by ZLN005 might provide a new path for modulating HbF levels with potential therapeutic benefit in ß-hemoglobinopathies.


Assuntos
Anemia Falciforme , Hemoglobinopatias , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Animais , Hemoglobina Fetal/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Camundongos , gama-Globinas/genética
15.
Cytometry A ; 101(11): 903-908, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35253987

RESUMO

Hematopoietic stem cells (HSCs) reside at the top of the hematopoietic hierarchy and can give rise to all the mature blood cell types in our body, while at the same time maintaining a pool of HSCs through self-renewing divisions. This potential is reflected in their functional definition as cells that are capable of long-term multi-lineage engraftment upon transplantation. While all HSCs meet these criteria, subtle differences exist between developmentally different populations of these cells. Here we present a comprehensive overview of traditional and more recently described markers for phenotyping HSCs and their downstream progeny. To address the need to assess the growing number of surface molecules expressed in various HSC-enriched fractions at different developmental stages, we have developed an extensive multi-parameter spectral flow cytometry panel to phenotype hematopoietic stem and multipotent progenitor cells (HSC/MPPs) throughout development. In this study we then employ this panel to comprehensively profile the HSC compartment in the human fetal liver (FL), which is endowed with superior engraftment potential compared to postnatal sources. Spectral cytometry lends an improved resolution of marker expression to our comprehensive approach, allowing to extract combinatorial expression signatures of several relevant HSC/MPP markers to precisely characterize the HSC/MPP fraction in a variety of tissues.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Humanos , Linhagem da Célula , Citometria de Fluxo , Biomarcadores/metabolismo , Fígado , Hematopoese , Diferenciação Celular
16.
Orbit ; : 1-5, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36250575

RESUMO

We present a case of an uncommon presentation of IgG4-related ophthalmic disease (ROD). A 58-year-old female presented with unilateral acute anterior uveitis of the right eye, which progressed to scleritis with the development of an associated orbital mass despite treatment with oral glucocorticoid. Initial histopathology of an orbital biopsy was non-diagnostic and continued progression of the disease lead to complete loss of vision in the right eye. The development of uveitis in the previously unaffected left eye led to the decision for enucleation of the right globe and further orbital biopsy. Histopathology revealed features supporting IgG4-related ophthalmic disease. Oral glucocorticoid therapy failed to induce remission, and rituximab therapy was initiated, leading to a rapid resolution in her symptoms. Other cases with a similar presentation report a poor visual prognosis, highlighting the need for prompt diagnosis and treatment of uveitis associated with signs of orbital or scleral involvement.

17.
J Biol Chem ; 295(22): 7774-7788, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32317280

RESUMO

Glioblastoma multiforme (GBM) is a malignant brain tumor with a poor prognosis resulting from tumor resistance to anticancer therapy and a high recurrence rate. Compelling evidence suggests that this is driven by subpopulations of cancer stem cells (CSCs) with tumor-initiating potential. ABC subfamily B member 5 (ABCB5) has been identified as a molecular marker for distinct subsets of chemoresistant tumor-initiating cell populations in diverse human malignancies. In the current study, we examined the potential role of ABCB5 in growth and chemoresistance of GBM. We found that ABCB5 is expressed in primary GBM tumors, in which its expression was significantly correlated with the CSC marker protein CD133 and with overall poor survival. Moreover, ABCB5 was also expressed by CD133-positive CSCs in the established human U-87 MG, LN-18, and LN-229 GBM cell lines. Antibody- or shRNA-mediated functional ABCB5 blockade inhibited proliferation and survival of GBM cells and sensitized them to temozolomide (TMZ)-induced apoptosis in vitro Likewise, in in vivo human GBM xenograft experiments with immunodeficient mice, mAb treatment inhibited growth of mutant TP53, WT PTEN LN-229 tumors, and sensitized LN-229 tumors to TMZ therapy. Mechanistically, we demonstrate that ABCB5 blockade inhibits TMZ-induced G2/M arrest and augments TMZ-mediated cell death. Our results identify ABCB5 as a GBM chemoresistance marker and point to the potential utility of targeting ABCB5 to improve current GBM therapies.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Anticorpos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Glioblastoma , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Proteínas de Neoplasias , RNA Interferente Pequeno , Temozolomida/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Lab Invest ; 101(3): 274-279, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33299126

RESUMO

Disorders involving injury to tissue stem cells that ensure normal tissue homeostasis and repair have potential to show unusually devastating clinical consequences. Acute graft-versus-host disease (aGVHD) is one condition where relatively few cytotoxic immune cells target skin stem cells to produce significant morbidity and mortality. By analogy, SARS-CoV-2 is a vector that initially homes to pulmonary stem cells that preferentially express the ACE2 receptor, thus potentially incurring similarly robust pathological consequences. In older individuals, stem cell number and/or function become depleted due to pathways independent of disease-related injury to these subpopulations. Accordingly, pathologic targeting of stem cells in conditions like aGVHD and COVID-19 infection where these cells are already deficient due to the aging process may have dire consequences in elderly individuals. A hypothesis is herein advanced that, as with aGVHD, lung stem cell targeting is a potential co-factor in explaining age-related severity of COVID-19 infection.


Assuntos
COVID-19/etiologia , Doença Enxerto-Hospedeiro/etiologia , SARS-CoV-2 , Fatores Etários , Envelhecimento/imunologia , Envelhecimento/patologia , COVID-19/imunologia , COVID-19/patologia , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Humanos , Pulmão/imunologia , Pulmão/patologia , Modelos Biológicos , Fatores de Risco , SARS-CoV-2/patogenicidade , Pele/imunologia , Pele/patologia , Células-Tronco/imunologia , Células-Tronco/patologia
19.
Lab Invest ; 101(5): 636-647, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33299127

RESUMO

Activating transcription factor 3 (ATF-3), a cyclic AMP-dependent transcription factor, has been shown to play a regulatory role in melanoma, although its function during tumor progression remains unclear. Here, we demonstrate that ATF-3 exhibits tumor suppressive function in melanoma. Specifically, ATF-3 nuclear expression was significantly diminished with melanoma progression from nevi to primary to metastatic patient melanomas, correlating low expression with poor prognosis. Significantly low expression of ATF-3 was also found in cultured human metastatic melanoma cell lines. Importantly, overexpression of ATF-3 in metastatic melanoma cell lines significantly inhibited cell growth, migration, and invasion in vitro; as well as abrogated tumor growth in a human melanoma xenograft mouse model in vivo. RNA sequencing analysis revealed downregulation of ERK and AKT pathways and upregulation in apoptotic-related genes in ATF-3 overexpressed melanoma cell lines, which was further validated by Western-blot analysis. In summary, this study demonstrated that diminished ATF-3 expression is associated with melanoma virulence and thus provides a potential target for novel therapies and prognostic biomarker applications.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Melanoma/metabolismo , Animais , Apoptose , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Melanoma Experimental/metabolismo , Camundongos Nus , Proteína Oncogênica v-akt/metabolismo , Fosforilação , Estudos Retrospectivos
20.
Am J Transplant ; 21(10): 3472-3480, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34033210

RESUMO

There is limited experience with facial retransplantation (fRT). We report on the management of facial retransplantation in a facial vascularized composite allotransplant recipient following irreversible allograft loss 88 months after the first transplant. Chronic antibody-mediated rejection and recurrent cellular rejection resulted in a deteriorated first allograft and the patient underwent retransplantation. We summarize the events between the two transplantations, focusing on the final rejection episode. We describe the surgical technique of facial retransplantation, the immunological and psychosocial management, and the 6-month postoperative outcomes. Removal of the old allograft and inset of the new transplant were done in one operation. The donor and recipient were a good immunological match. The procedure was technically complex, requiring more proximal arterial anastomoses and an interposition vein graft. During the first and second transplantation, the facial nerve was coapted at the level of the branches. There was no hyperacute rejection in the immediate postoperative phase. Outcomes 6 months postoperatively are promising. We provide proof-of-concept that facial retransplantation is a viable option for patients who suffer irreversible facial vascularized composite allograft loss.


Assuntos
Aloenxertos Compostos , Rejeição de Enxerto , Feminino , Rejeição de Enxerto/etiologia , Humanos , Reoperação , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA