Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Clin Genet ; 105(4): 453-454, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38072398

RESUMO

This graphic abstract combines pedigree, dysmorphology features, radiographs, and the PRKG2 protein domain, specifically the CNB-A regulatory domain, which harbors a mutation resulting in premature protein termination.


Assuntos
Exoma , Família , Humanos , Proteína Quinase Dependente de GMP Cíclico Tipo II/genética , Exoma/genética , Mutação/genética , Linhagem
2.
Mov Disord ; 39(2): 339-349, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38014556

RESUMO

BACKGROUND: Recent studies have advanced our understanding of the genetic drivers of Parkinson's disease (PD). Rare variants in more than 20 genes are considered causal for PD, and the latest PD genome-wide association study (GWAS) identified 90 independent risk loci. However, there remains a gap in our understanding of PD genetics outside of the European populations in which the vast majority of these studies were focused. OBJECTIVE: The aim was to identify genetic risk factors for PD in a South Asian population. METHODS: A total of 674 PD subjects predominantly with age of onset (AoO) ≤50 years (encompassing juvenile, young, or early-onset PD) were recruited from 10 specialty movement disorder centers across India over a 2-year period; 1376 control subjects were selected from the reference population GenomeAsia, Phase 2. We performed various case-only and case-control genetic analyses for PD diagnosis and AoO. RESULTS: A genome-wide significant signal for PD diagnosis was identified in the SNCA region, strongly colocalizing with SNCA region signal from European PD GWAS. PD cases with pathogenic mutations in PD genes exhibited, on average, lower PD polygenic risk scores than PD cases lacking any PD gene mutations. Gene burden studies of rare, predicted deleterious variants identified BSN, encoding the presynaptic protein Bassoon that has been previously associated with neurodegenerative disease. CONCLUSIONS: This study constitutes the largest genetic investigation of PD in a South Asian population to date. Future work should seek to expand sample numbers in this population to enable improved statistical power to detect PD genes in this understudied group. © 2023 Denali Therapeutics and The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Pessoa de Meia-Idade , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Doença de Parkinson/diagnóstico , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Mutação
3.
J Hum Genet ; 67(3): 133-136, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34621002

RESUMO

Neutral sphingomyelinases have an important role in generation of ceramide and phosphorylcholine from sphingomyelins which then act as secondary messengers in various signaling pathways of the cellular machinery. They function ubiquitously with a predominant role in the central nervous system. Neutral sphingomyelinase type 3, encoded by SMPD4 gene has recently been reported to cause a severe autosomal recessive neurodevelopmental disorder with congenital arthrogryposis and microcephaly. We report a 22-month-old girl having characteristic features of neurodevelopmental delay, prenatal onset growth failure, arthrogryposis, microcephaly and brain anomalies including severe hypomyelination, simplified gyral pattern and hypoplasia of corpus callosum and brain stem. In addition, she was noted to have nystagmus and visual impairment secondary to macular dystrophy and retinal pigment epithelial stippling at posterior pole. Copy number variant analysis from trio whole exome sequencing (ES) enabled identification of a homozygous 11 kb deletion encompassing exons 18-20 of SMPD 4 gene, confirming the diagnosis of SMPD4-related disorder in her.


Assuntos
Artrogripose , Microcefalia , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Artrogripose/genética , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Lactente , Microcefalia/diagnóstico , Microcefalia/genética , Malformações do Sistema Nervoso/genética , Gravidez
4.
BMC Med Genet ; 19(1): 22, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29439679

RESUMO

BACKGROUND: Maturity-onset diabetes of the young (MODY) is an early-onset, autosomal dominant form of non-insulin dependent diabetes. Genetic diagnosis of MODY can transform patient management. Earlier data on the genetic predisposition to MODY have come primarily from familial studies in populations of European origin. METHODS: In this study, we carried out a comprehensive genomic analysis of 289 individuals from India that included 152 clinically diagnosed MODY cases to identify variants in known MODY genes. Further, we have analyzed exome data to identify putative MODY relevant variants in genes previously not implicated in MODY. Functional validation of MODY relevant variants was also performed. RESULTS: We found MODY 3 (HNF1A; 7.2%) to be most frequently mutated followed by MODY 12 (ABCC8; 3.3%). They together account for ~ 11% of the cases. In addition to known MODY genes, we report the identification of variants in RFX6, WFS1, AKT2, NKX6-1 that may contribute to development of MODY. Functional assessment of the NKX6-1 variants showed that they are functionally impaired. CONCLUSIONS: Our findings showed HNF1A and ABCC8 to be the most frequently mutated MODY genes in south India. Further we provide evidence for additional MODY relevant genes, such as NKX6-1, and these require further validation.


Assuntos
Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/epidemiologia , Adolescente , Adulto , Estudos de Coortes , Exoma , Feminino , Biblioteca Gênica , Genômica , Hemoglobinas Glicadas/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Índia/epidemiologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição de Fator Regulador X/genética , Fatores de Transcrição de Fator Regulador X/metabolismo , Análise de Sequência de DNA , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/metabolismo , Adulto Jovem
5.
Metab Brain Dis ; 32(6): 1889-1900, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28776279

RESUMO

Asparagine synthetase deficiency is a rare inborn error of metabolism caused by a defect in ASNS, a gene encoding asparagine synthetase. It manifests with a severe neurological phenotype manifesting as severe developmental delay, congenital microcephaly, spasticity and refractory seizures. To date, nineteen patients from twelve unrelated families have been identified. Majority of the mutations are missense and nonsense mutations in homozygous or compound heterozygous state. We add another case from India which harbored a novel homozygous missense variation in exon 11 and compare the current case with previously reported cases.


Assuntos
Aspartato-Amônia Ligase/deficiência , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Microcefalia/genética , Mutação , Aspartato-Amônia Ligase/genética , Pré-Escolar , Feminino , Humanos
6.
Mol Vis ; 22: 73-81, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26900326

RESUMO

PURPOSE: To identify the causative mutation in two siblings from a consanguineous family in India with retinitis pigmentosa (RP) and polydactyly without other findings of Bardet-Biedl syndrome (BBS). We also performed functional characterization of the mutant protein to explore its role in this limited form of BBS. METHODS: The siblings underwent a thorough ophthalmological examination, including retinal optical coherence tomography (OCT) imaging, and an extensive physical examination with abdominal ultrasonography to characterize the disease phenotype. Next-generation sequencing (NGS) using a panel targeting retinal degeneration genes was performed on genomic DNA samples from the siblings and parents. Upon identification of the causative mutation, functional characterization was accomplished by performing protein-protein interaction studies in human embryonic kidney (HEK-293T) and human adult retinal pigmented epithelium (ARPE-19) cells. RESULTS: The two siblings showed signs of RP and polydactyly. The patients did not have truncal obesity, renal anomalies, hydrometrocolpos, congenital heart disease, or overt cognitive defects. NGS identified a homozygous c.1184A>G mutation in the MKKS/BBS6 gene in both patients resulting in a p.H395R substitution in the MKKS/BBS6 protein. This mutant protein decreased the interaction of MKKS/BBS6 with BBS12 but did so to a different extent in the HEK-293T versus ARPE-19 cells. Nonetheless, the effect of the H395R variant on disrupting interactions with BBS12 was not as profound as other reported MKKS/BBS6 mutations associated with syndromic RP. CONCLUSIONS: We identified a novel H395R substitution in MKKS/BBS6 that results in a unique phenotype of only RP and polydactyly. Our observations reaffirm the notion that mutations in MKKS/BBS6 cause phenotypic heterogeneity and do not always result in classic MKKS or BBS findings.


Assuntos
Anormalidades Múltiplas/genética , Síndrome de Bardet-Biedl/genética , Chaperoninas do Grupo II/genética , Cardiopatias Congênitas/genética , Hidrocolpos/genética , Mutação de Sentido Incorreto , Polidactilia/genética , Retinose Pigmentar/genética , Doenças Uterinas/genética , Adolescente , Western Blotting , Consanguinidade , Análise Mutacional de DNA , Feminino , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Linhagem , Plasmídeos , Epitélio Pigmentado da Retina/citologia , Irmãos , Tomografia de Coerência Óptica
7.
Am J Med Genet A ; 170(7): 1868-73, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27108999

RESUMO

We report on a sib pair of Indian origin presenting with intellectual disability, dysmorphism, and macrocephaly. Exome sequencing revealed a homozygous splice site HERC1 mutation in both probands. Functional analysis revealed use of an alternate splice site resulting in formation of a downstream stop codon and nonsense mediated decay. In the light of recent reports of HERC1 mutations in two families with a similar phenotypic presentation, this report reiterates the pathogenic nature and clinical consequences of HERC1 disruption. © 2016 Wiley Periodicals, Inc.


Assuntos
Predisposição Genética para Doença , Fatores de Troca do Nucleotídeo Guanina/genética , Deficiência Intelectual/genética , Megalencefalia/genética , Criança , Pré-Escolar , Face/fisiopatologia , Feminino , Homozigoto , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Megalencefalia/fisiopatologia , Mutação , Linhagem , Fenótipo , Sítios de Splice de RNA/genética , Ubiquitina-Proteína Ligases
8.
Brain Commun ; 5(5): fcad243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074073

RESUMO

In this study, we have evaluated the underlying aetiologies, yield of genetic testing and long-term outcomes in patients with early-infantile developmental and epileptic encephalopathies. We have prospectively studied patients with seizure onset before 3 months of age. Based on the clinical details, neuroimaging, metabolic testing and comprehensive genetic evaluation, patients were classified into different aetiological groups. The phenotypic differences between genetic/unknown groups and remaining aetiologies were compared. Factors that could affect seizure control were also assessed. A total of 80 children (M:F ratio-1.5:1) were recruited. The median seizure onset age was 28 days (range, 1-90 days). The aetiologies were confirmed in 66 patients (83%). The patients were further classified into four aetiological groups: genetic (50%), structural (19%), metabolic (14%; all were vitamin responsive) and unknown (17%). On comparing for the phenotypic differences between the groups, children in the 'genetic/unknown' groups were more frequently observed to have severe developmental delay (Odds Ratio = 57; P < 0.0001), autistic behaviours (Odds Ratio = 37; P < 0.0001), tone abnormalities (Odds Ratio = 9; P = 0.0006) and movement disorder (Odds Ratio = 19; P < 0.0001). Clonic seizures were more common in the vitamin responsive/structural groups (Risk Ratio = 1.36; P = 0.05) as compared to patients with 'genetic/unknown' aetiologies. On the contrary, vitamin responsive/structural aetiology patients were less likely to have tonic seizures (Risk Ratio = 0.66; P = 0.04). Metabolic testing was diagnostic in three out of 41 patients tested (all three had biotinidase deficiency). MRI was abnormal in 35/80 patients (malformation observed in 16/35; 19/35 had non-specific changes that did not contribute to underlying aetiology). A molecular diagnosis was achieved in 53 out of 77 patients tested (69%). Next-generation sequencing had a yield of 51%, while microarray had a yield of 14%. STXBP1 was the most common (five patients) single-gene defect identified. There were 24 novel variants. The mean follow-up period was 30 months (range, 4-72 months). On multivariate logistic regression for the important factors that could affect seizure control (seizure onset age, time lag of first visit to paediatric neurologist and aetiologies), only vitamin responsive aetiology had a statistically significant positive effect on seizure control (P = 0.02). Genetic aetiologies are the most common cause of early-infantile developmental and epileptic encephalopathies. Patients in the genetic/unknown groups had a more severe phenotype. Patients with vitamin responsive epilepsies had the best probability of seizure control.

9.
Nat Commun ; 14(1): 3377, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291107

RESUMO

The benefits of large-scale genetic studies for healthcare of the populations studied are well documented, but these genetic studies have traditionally ignored people from some parts of the world, such as South Asia. Here we describe whole genome sequence (WGS) data from 4806 individuals recruited from the healthcare delivery systems of Pakistan, India and Bangladesh, combined with WGS from 927 individuals from isolated South Asian populations. We characterize population structure in South Asia and describe a genotyping array (SARGAM) and imputation reference panel that are optimized for South Asian genomes. We find evidence for high rates of reproductive isolation, endogamy and consanguinity that vary across the subcontinent and that lead to levels of rare homozygotes that reach 100 times that seen in outbred populations. Founder effects increase the power to associate functional variants with disease processes and make South Asia a uniquely powerful place for population-scale genetic studies.


Assuntos
Povo Asiático , Efeito Fundador , Humanos , Povo Asiático/genética , Bangladesh , Homozigoto , Índia , Paquistão , População do Sul da Ásia
11.
Indian J Pediatr ; 89(12): 1243-1250, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35819704

RESUMO

OBJECTIVE: To evaluate metabolic and genetic abnormalities in children with nephrolithiasis attending a referral center in North India. METHODS: The patients aged 1-18 y old with nephrolithiasis underwent biochemical evaluation and whole-exome sequencing. The authors evaluated for monogenic variants in 56 genes and compared allele frequency of 39 reported polymorphisms between patients and 1739 controls from the GenomeAsia 100 K database. RESULTS: Fifty-four patients, aged 9.1 ± 3.7 y were included. Stones were bilateral in 42.6%, familial in 33.3%, and recurrent in 25.9%. The most common metabolic abnormalities were hypercalciuria (35.2%), hyperoxaluria (24.1%), or both (11.1%), while xanthinuria (n = 3), cystinuria (n = 1), and hyperuricosuria (n = 1) were rare. Exome sequencing identified an etiology in 6 (11.1%) patients with pathogenic/likely pathogenic causative variants. Three variants in MOCOS and one in ATP7B were pathogenic; likely pathogenic variants included MOCOS (n = 2), AGXT, and SLC7A9 (n = 1, each). Causality was not attributed to two SLC34A1 likely pathogenic variants, due to lack of matching phenotype and dominant family history. Compared to controls, allele frequency of the polymorphism TRPV5 rs4252402 was significantly higher in familial stone disease (allele frequency 0.47 versus 0.53; OR 3.2, p = 0.0001). CONCLUSION: The chief metabolic abnormalities were hypercalciuria and hyperoxaluria. A monogenic etiology was identified in 11% with pathogenic or likely pathogenic variants using a gene panel for nephrolithiasis. Heterozygous missense variants in the sodium-phosphate cotransporter SLC34A1 were common and required evaluation for attributing pathogenicity. Rare polymorphisms in TRPV5 might increase the risk of familial stones. These findings suggest that a combination of metabolic and genetic evaluation is useful for determining the etiology of nephrolithiasis.


Assuntos
Hipercalciúria , Hiperoxalúria , Nefrolitíase , Humanos , Hipercalciúria/complicações , Hiperoxalúria/complicações , Índia , Nefrolitíase/genética , Fenótipo , Sulfurtransferases/genética , Criança
12.
Adv Biol (Weinh) ; 6(11): e2101326, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35810474

RESUMO

Parkinson's disease (PD) is a genetically heterogeneous neurodegenerative disease with poorly defined environmental influences. Genomic studies of PD patients have identified disease-relevant monogenic genes, rare variants of significance, and polygenic risk-associated variants. In this study, whole genome sequencing data from 90 young onset Parkinson's disease (YOPD) individuals are analyzed for both monogenic and polygenic risk. The genetic variant analysis identifies pathogenic/likely pathogenic variants in eight of the 90 individuals (8.8%). It includes large homozygous coding exon deletions in PRKN and SNV/InDels in VPS13C, PLA2G6, PINK1, SYNJ1, and GCH1. Eleven rare heterozygous GBA coding variants are also identified in 13 (14.4%) individuals. In 34 (56.6%) individuals, one or more variants of uncertain significance (VUS) in PD/PD-relevant genes are observed. Though YOPD patients with a prioritized pathogenic variant show a low polygenic risk score (PRS), patients with prioritized VUS or no significant rare variants show an increased PRS odds ratio for PD. This study suggests that both significant rare variants and polygenic risk from common variants together may contribute to the genesis of PD. Further validation using a larger cohort of patients will confirm the interplay between monogenic and polygenic variants and their use in routine genetic PD diagnosis and risk assessment.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Predisposição Genética para Doença/genética , Doenças Neurodegenerativas/genética , Herança Multifatorial/genética , Testes Genéticos
13.
J Pediatr Genet ; 10(1): 23-28, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33552634

RESUMO

Multiplex ligation-dependent probe amplification (MLPA) detects exonic deletions and duplications in the DMD gene in around 65 to 70% of patients with the Duchenne muscular dystrophy (DMD) phenotype. This study looks at the diagnostic yield of next-generation sequencing (NGS) and the mutation spectrum in an Asian Indian cohort of MLPA-negative cases with the DMD phenotype. NGS-based sequencing of DMD gene was done in 28 MLPA-negative cases (25 male probands with the DMD phenotype and 3 obligate carrier mothers of deceased affected male patients) and disease-causing variants were identified in 19 (67.9%) of these cases. Further molecular testing in four of the remaining nine cases revealed gene variants associated with limb girdle muscular dystrophies. Thus, NGS-based multigene panel testing for muscular dystrophy-associated genes or clinical exome sequencing rather than targeted DMD gene sequencing appears to be a more cost-effective testing modality with better diagnostic yield, for MLPA-negative patients with the DMD phenotype.

14.
BMC Med Genomics ; 14(1): 188, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294096

RESUMO

BACKGROUND: India accounts for 20% of the global retinoblastoma (RB) burden. However, the existing data on RB1 gene germline mutations and its influence on clinical decisions is minimally explored. METHODS: Fifty children with RB underwent complete clinical examination and appropriate multidisciplinary management. Screening of germline RB1 gene mutations was performed through next-generation sequencing and Multiplex Ligation-dependent Probe Amplification (MLPA) analysis. The mutation and non-mutation groups were compared for clinical parameters especially severity, progression and recurrence. RESULTS: Twenty-nine patients had bilateral RB (BLRB) and 21 had unilateral RB (ULRB). The genetic analysis revealed 20 RB1 variations in 29 probands, inclusive of 3 novel mutations, known 16 mutations and heterozygous whole gene deletions. The mutation detection rate (MDR) was 86.2% in BLRB and 19% in ULRB. Associations of disease recurrence (p = 0.021), progression (p = 0.000) and higher percentage of optic nerve invasion, subretinal seeds and high-risk pathological factors were observed in the mutation group. Clinical management was influenced by the presence of germline mutations, particularly while deciding on enucleation, frequency of periodic follow up and radiotherapy. CONCLUSIONS: We identified novel RB1 mutations, and our mutation detection rate was on par with the previous global studies. In our study, genetic results influenced clinical management and we suggest that it should be an essential and integral component of RB-care in India and elsewhere.


Assuntos
Retinoblastoma
15.
Indian J Med Res ; 132: 303-11, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20847377

RESUMO

BACKGROUND & OBJECTIVES: Duchenne (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive disorders, caused by mutations in the dystrophin gene. Genetic diagnosis of the proband becomes crucial, and forms the base for carrier analysis, genetic counselling, prediction of natural history and prognosis, and eligibility for therapeutic strategies. Traditional multiplex PCR assay is the common method used in India to detect DMD gene deletions, mainly in the hot-spot region. Deletions of exons outside the usual 18 or 21 exons in the hot-spot, duplications and carrier analysis are often left without precise genetic diagnosis and require efficient dosage/quantitative analysis. In this study we evaluated the efficacy of using multiplex PCR (mPCR) of 30 exons followed by multiplex ligation-dependent probe amplification (MLPA), to study deletions and duplications in the DMD gene in patients clinically diagnosed as BMD/DMD. METHODS: Using an algorithm of mPCR and MLPA which was less invasive and cost-effective, we performed retrospective and prospective analysis on 150 male patients. RESULTS: Multiplex PCR could pick up deletions in 103 of the 150 cases. MLPA was able to detect deletions and duplications including nine additional mutations. Further, the borders of the deletions and duplications were more accurately defined by this recent methodology, which enables one to determine the effect of the mutation on the reading frame. In all, including the single exon deletions, MLPA was efficient in accurately confirming mutations in 35 per cent of all cases. Ten novel mutations were identified in this study. Overall, this approach confirmed mutations in 75 per cent of the patients in our study. INTERPRETATION & CONCLUSIONS: The systematic approach/algorithm used in this study offers the best possible economical mutation analysis in the Indian scenario.


Assuntos
Análise Mutacional de DNA/métodos , Distrofina/genética , Técnicas de Sonda Molecular , Distrofia Muscular de Duchenne/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase/métodos , Adolescente , Adulto , Algoritmos , Criança , Pré-Escolar , Análise Mutacional de DNA/economia , Éxons/genética , Deleção de Genes , Humanos , Índia , Masculino , Mutação/genética , Estudos Prospectivos , Estudos Retrospectivos
16.
Sci Rep ; 10(1): 17299, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057012

RESUMO

Classical homocystinuria is the most common cause of isolated homocystinuria. The variants of the CBS gene remain unidentified in Indian children with this disorder. Based on the hallmark clinical features, family history, and/or biochemical clues for classical homocystinuria, 16 children below the age of 18 years were evaluated by Sanger sequencing of the coding exons of CBS gene with flanking intronic regions. The common C677T variant of the MTHFR gene was also screened by restriction fragment length polymorphism. Fifteen children were clinically suspected of having classical homocystinuria and one asymptomatic child with positive family history. Only seven children had biochemical features of classical homocystinuria. Sanger sequencing of the CBS gene confirmed 15 different pathogenic or likely pathogenic variants in 14 cases. Of these, seven variants were novel (three frameshift deletions, two nonsense, one missense, one splice site variant) and were predicted to be deleterious by Mutation Taster software. Seven cases were homozygous, another six were compound heterozygous, and one case was single heterozygous in the study. None of the three most frequent mutations reported worldwide viz., I278T, G307S, and IVS 11-2A>C were found in our cohort. No variants were detected in the exons 2, 8, 12, and 14 as compared to reported literature. Eleven out of 15 variants were associated with the conserved catalytic domain of the CBS polypeptide. The MTHFR polymorphism C677T was observed in heterozygous state in six cases. Our study reports the detailed genotype and seven novel variants in the CBS gene, causing classical homocystinuria in Indian children. The genetic analysis will help to offer accurate genetic counseling, prenatal diagnosis, and development of mutation-based novel therapeutic strategies.


Assuntos
Homocistinúria/genética , Metionina Sulfóxido Redutases/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Proteínas dos Microfilamentos/genética , Peptídeos/genética , Adolescente , Criança , Estudos de Coortes , Feminino , Aconselhamento Genético , Variação Genética , Homocistinúria/classificação , Homocistinúria/diagnóstico , Homocistinúria/terapia , Humanos , Índia , Masculino , Mutação , Diagnóstico Pré-Natal
17.
Eur J Hum Genet ; 28(5): 669-673, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31965066

RESUMO

The T-box4 (TBX4) gene (OMIM *601719) belongs to the T-box family of transcription regulators that share a conserved homology domain and are expressed at specific sites during various stages of embryonic development. Tbx4 has been found to be a crucial transcriptional regulator in embryonic hindlimb development in animal models. Monoallelic variants in the TBX4 gene are reported to be associated with skeletal defects of the pelvis and lower limbs. We report here a fetus with a novel multiple malformation syndrome associated with sacrococcygeal agenesis, bilateral lower limb aplasia, hypoplastic left heart, bilateral lung hypoplasia, hydroureteronephrosis, and nonimmune fetal hydrops, found to have a homozygous nonsense variant in the TBX4 gene. We propose that biallelic variants in the TBX4 gene are associated with a severe syndromic phenotype of sacrococcygeal agenesis and lower limb reduction defects.


Assuntos
Anormalidades Múltiplas/genética , Feto/anormalidades , Proteínas com Domínio T/genética , Anormalidades Múltiplas/patologia , Códon sem Sentido , Feminino , Humanos , Deformidades Congênitas das Extremidades Inferiores/genética , Pelve/anormalidades , Gravidez , Adulto Jovem
18.
Mol Genet Genomic Med ; 8(2): e1081, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31816670

RESUMO

BACKGROUND: Studies evaluating next-generation sequencing (NGS) for retinal disorders may not reflect clinical practice. We report results of retrospective analysis of patients referred for clinical testing at two institutions (US and India). METHODS: This retrospective study of 131 patients who underwent clinically validated targeted NGS or exome sequencing for a wide variety of clinical phenotypes categorized results into a definitive, indeterminate, or negative molecular diagnosis. RESULTS: A definitive molecular diagnosis (52%) was more common in the India cohort (62% vs. 39%, p = .009), while an indeterminate molecular diagnosis occurred only in the US cohort (12%). In the US cohort, a lower diagnostic rate in Hispanic, non-Caucasians (23%) was seen compared to Caucasians (57%). The India cohort had a high rate of homozygous variants (61%) and different frequency of genes involved compared to the US cohort. CONCLUSION: Despite inherent limitations in clinical testing, the diagnostic rate across the two cohorts (52%) was similar to the 50%-65% diagnostic rate in the literature. However, the diagnostic rate was lower in the US cohort and appears partly explained by racial background. The high rate of consanguinity in the Indian population is reflected in the high rate of homozygosity for pathogenic mutations and may have implications for population level screening and genetic counseling. Clinical laboratories may note diagnostic rates that differ from the literature, due to factors such as heterogeneity in racial background or consanguinity rates in the populations being tested. This information may be useful for post-test counseling.


Assuntos
Testes Genéticos/estatística & dados numéricos , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Mutação , Doenças Retinianas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Frequência do Gene , Testes Genéticos/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Homozigoto , Humanos , Índia , Lactente , Masculino , Pessoa de Meia-Idade , Doenças Retinianas/diagnóstico , Doenças Retinianas/etnologia , Análise de Sequência de DNA/normas , Análise de Sequência de DNA/estatística & dados numéricos , Estados Unidos
19.
Epilepsy Behav Rep ; 14: 100397, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33196034

RESUMO

This study explores the etiology and lead time to treatment for infantile spasm (IS) patients and their effect on treatment responsiveness, in a limited resource setting. Patients with IS onset age ≤12 months', seen over 3 years were recruited retrospectively. Clinical information, neuroimaging and genetic results retrieved. Patients categorized into three primary etiological groups: Structural (including Structural Genetic), Genetic, and Unknown. The effect of etiology and lead time from IS onset to initiating appropriate treatment on spasm resolution, evaluated. Total 113 patients were eligible. Mean IS onset age was 6.86(±4.25) months (M: F 3.3:1). Patients were grouped into: Structural 85, Genetic 11 and Unknown 17. Etiology was ascertained in 94/113 (83.1%) with neonatal hypoglycemic brain injury (NHBI) being the most common (40/113, 36%). A genetic etiology identified in 17 (including 6 Structural Genetic, of which five had Tuberous Sclerosis). Structural group was less likely to be treatment resistant (p = 0.013, OR 0.30 [0.12-0.76]). Median treatment lead time - 60 days. Longer lead time to treatment was significantly associated with resistant spasms (χ2 for trend = 10.0, p = 0.0015). NHBI was the commonest underlying cause of IS. There was significant time lag to initiating appropriate treatment, affecting treatment responsiveness.

20.
Tuberculosis (Edinb) ; 121: 101915, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32279871

RESUMO

Tuberculosis is the leading cause of death among infectious diseases worldwide. Detection of Mycobacterium tuberculosis (Mtb), using routine culture-based methods is time consuming resulting in delayed diagnosis and poor treatment outcomes. Currently available molecular tests provide faster diagnosis but are able to screen only limited hot-spot mutations. Whole genome sequencing from direct sputum offers a potential solution, however, due to the presence of other microbes and host DNA its use in diagnostic testing remains challenging. In this study, we present a targeted Mtb-enrichment assay for lineage-4 coupled with an improved analysis pipeline that uses 1657 bacterial taxa as background for reducing non-Mtb genome from sputum DNA. This method drastically improved the recovery of Mtb DNA from sputum (Mtb alignment increased from 3% to >65%) as compared to non-enrichment-based sequencing. We obtained >99% Mtb genome coverage as compared to 49% in non-enriched sputum sequencing. We were able to identify Mtb positive samples from controls with 100% accuracy using Mpt64 gene coverage. Our method not only achieved 100% sensitivity to resistance variants profiled by line probe assay (LPA), but also outperformed LPA in determining drug resistance based on phenotypic drug susceptibility tests for 6 anti-tuberculosis drugs (accuracy of 97.7% and 92.8% by enriched WGS and LPA, respectively).


Assuntos
Técnicas Bacteriológicas , Análise Mutacional de DNA , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Mutação , Mycobacterium tuberculosis/genética , Escarro/microbiologia , Tuberculose Pulmonar/microbiologia , Sequenciamento Completo do Genoma , Antituberculosos/uso terapêutico , Estudos de Casos e Controles , DNA Bacteriano/isolamento & purificação , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Fenótipo , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA