Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Malar J ; 12: 97, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23497268

RESUMO

BACKGROUND: Anopheles gambiae, one of the main Afro-tropical mosquito vector of malaria, has adapted to heavy metals in its natural habitat, and developed resistance to most conventional insecticides. Investigations were conducted to establish an association between tolerance to cadmium or lead-heavy metals, and expression of specific genes for cytochrome p450 enzymes associated with pyrethroid resistance in the mosquito. METHODS: Juvenile aquatic stages of the mosquito were selected for tolerance to cadmiun or lead through chronic exposure of the stages to maximum acceptable toxicant concentrations (MATCs) of the metals. Using real-time quantitative polymerase chain reaction (qPCR), three replicates each of male or female cadmium or lead-tolerant individuals and relevant controls were separately screened for expression of CYP6M2, CYP6P3 and CYP6Z1 genes. The variance in expression levels of the genes amongst the treatments was compared by ANOVA statistical tool. RESULTS: Expressions of all the genes were significantly lower (P <0.05) in females than in males. Within gender, there 1.3 - 2.3 or 3.1-4.2-fold reduction in expression of the genes in cadmium or lead selected than respective control populations. Expression of all the classes of gene was elevated in cadmium selected female populations relative to their respective controls. CONCLUSION: These findings suggest that tolerance to cadmium or lead in the mosquito can influence response in cytochrome p450 genes associated with metabolism of pyrethroids in the mosquito in a sex-specific manner. This can, in turn, affect sensitivity of the mosquito to pyrethroids and other xenobiotics associated with these genes, with potential implications in mosquito vector control operations.


Assuntos
Anopheles/efeitos dos fármacos , Cádmio/metabolismo , Sistema Enzimático do Citocromo P-450/biossíntese , Tolerância a Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Chumbo/metabolismo , Animais , Cádmio/toxicidade , Feminino , Perfilação da Expressão Gênica , Inseticidas/farmacologia , Chumbo/toxicidade , Masculino , Piretrinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Seleção Genética , Fatores Sexuais
2.
Sci Transl Med ; 15(682): eabn5993, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36753561

RESUMO

Natural killer (NK) cells are potent immune effectors that can be activated via antibody-mediated Fc receptor engagement. Using multiparameter flow cytometry, we found that NK cells degranulate and release IFN-γ upon stimulation with antibody-opsonized Plasmodium falciparum merozoites. Antibody-dependent NK (Ab-NK) activity was largely strain transcending and enhanced invasion inhibition into erythrocytes. Ab-NK was associated with the successful control of parasitemia after experimental malaria challenge in African adults. In an independent cohort study in children, Ab-NK increased with age, was boosted by concurrent P. falciparum infections, and was associated with a lower risk of clinical episodes of malaria. Nine of the 14 vaccine candidates tested induced Ab-NK, including some less well-characterized antigens: P41, P113, MSP11, RHOPH3, and Pf_11363200. These data highlight an important role of Ab-NK activity in immunity against malaria and provide a potential mechanism for evaluating vaccine candidates.


Assuntos
Malária Falciparum , Malária , Criança , Adulto , Animais , Humanos , Antígenos de Protozoários , Estudos de Coortes , Merozoítos , Anticorpos Antiprotozoários , Plasmodium falciparum , Células Matadoras Naturais
3.
Nat Commun ; 13(1): 4098, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835738

RESUMO

Ring-infected erythrocytes are the predominant asexual stage in the peripheral circulation but are rarely investigated in the context of acquired immunity against Plasmodium falciparum malaria. Here we compare antibody-dependent phagocytosis of ring-infected parasite cultures in samples from a controlled human malaria infection (CHMI) study (NCT02739763). Protected volunteers did not develop clinical symptoms, maintained parasitaemia below a predefined threshold of 500 parasites/µl and were not treated until the end of the study. Antibody-dependent phagocytosis of both ring-infected and uninfected erythrocytes from parasite cultures was strongly correlated with protection. A surface proteomic analysis revealed the presence of merozoite proteins including erythrocyte binding antigen-175 and -140 on ring-infected and uninfected erythrocytes, providing an additional antibody-mediated protective mechanism for their activity beyond invasion-inhibition. Competition phagocytosis assays support the hypothesis that merozoite antigens are the key mediators of this functional activity. Targeting ring-stage parasites may contribute to the control of parasitaemia and prevention of clinical malaria.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Anticorpos Antiprotozoários , Antígenos de Protozoários , Eritrócitos/parasitologia , Humanos , Malária Falciparum/parasitologia , Merozoítos , Parasitemia , Fagocitose , Plasmodium falciparum , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA