RESUMO
BACKGROUND AND AIMS: Dickkopf-1 (DKK1) is associated with poor prognosis in intrahepatic cholangiocarcinoma (iCCA), but the mechanisms behind this are unclear. Here, we show that DKK1 plays an immune regulatory role in vivo and inhibition reduces tumour growth. METHODS: Various in vivo GEMM mouse models and patient samples were utilized to assess the effects of tumour specific DKK1 overexpression in iCCA. DKK1-driven changes to the tumour immune microenvironment were characterized by immunostaining and gene expression analysis. DKK1 overexpressing and damage-induced models of iCCA were used to demonstrate the therapeutic efficacy of DKK1 inhibition in these contexts using the anti-DKK1 therapeutic, DKN-01. RESULTS: DKK1 overexpression in mouse models of iCCA drives an increase in chemokine and cytokine signalling, the recruitment of regulatory macrophages, and promotes the formation of a tolerogenic niche with higher numbers of regulatory T cells. We show a similar association of DKK1 with FOXP3 and regulatory T cells in patient tissue and gene expression data, demonstrating these effects are relevant to human iCCA. Finally, we demonstrate that inhibition of DKK1 with the monoclonal antibody mDKN-01 is effective at reducing tumour burden in two distinct mouse models of the disease. CONCLUSION: DKK1 promotes tumour immune evasion in iCCA through the recruitment of immune suppressive macrophages. Targeting DKK1 with a neutralizing antibody is effective at reducing tumour growth in vivo. As such, DKK1 targeted and immune modulatory therapies may be an effective strategy in iCCA patients with high DKK1 tumour expression or tolerogenic immune phenotypes.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Peptídeos e Proteínas de Sinalização Intercelular , Animais , Humanos , Camundongos , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Fenótipo , Microambiente TumoralRESUMO
The aberrant gain of DNA methylation at CpG islands is frequently observed in colorectal tumours and may silence the expression of tumour suppressors such as MLH1. Current models propose that these CpG islands are targeted by de novo DNA methyltransferases in a sequence-specific manner, but this has not been tested. Using ectopically integrated CpG islands, here we find that aberrantly methylated CpG islands are subject to low levels of de novo DNA methylation activity in colorectal cancer cells. By delineating DNA methyltransferase targets, we find that instead de novo DNA methylation activity is targeted primarily to CpG islands marked by the histone modification H3K36me3, a mark associated with transcriptional elongation. These H3K36me3 marked CpG islands are heavily methylated in colorectal tumours and the normal colon suggesting that de novo DNA methyltransferase activity at CpG islands in colorectal cancer is focused on similar targets to normal tissues and not greatly remodelled by tumourigenesis.