Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mov Disord ; 39(5): 892-897, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480525

RESUMO

BACKGROUND: Little is known about the impact of the cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) on cognition. OBJECTIVE: Our objective was to determine the frequency and severity of cognitive impairment in RFC1-positive patients and describe the pattern of deficits. METHODS: Participants underwent a comprehensive neuropsychological assessment. Volume of the cerebellum and its lobules was measured in those who underwent a 3 Tesla-magnetic resonance scan. RESULTS: Twenty-one patients underwent a complete assessment, including 71% scoring lower than the cutoff at the Montreal Cognitive assessment and 71% having a definite cerebellar cognitive affective/Schmahmann syndrome. Three patients had dementia and seven met the criteria of mild cognitive impairment. Severity of cognitive impairment did not correlate with severity of clinical manifestations. Performance at memory and visuospatial functions tests negatively correlated with the severity of cerebellar manifestations. CONCLUSION: Cognitive manifestations are frequent in RFC1-related disorders. They should be included in the phenotype and screened systematically. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Cerebelar , Disfunção Cognitiva , Fenótipo , Humanos , Feminino , Masculino , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Ataxia Cerebelar/fisiopatologia , Ataxia Cerebelar/complicações , Pessoa de Meia-Idade , Idoso , Adulto , Testes Neuropsicológicos , Proteína de Replicação C/genética , Imageamento por Ressonância Magnética , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Cerebelo/patologia , Doenças Vestibulares/fisiopatologia
2.
Mov Disord ; 38(4): 604-615, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36788297

RESUMO

BACKGROUND: Epidemiological studies that examined the association between Parkinson's disease (PD) and cancers led to inconsistent results, but they face a number of methodological difficulties. OBJECTIVE: We used results from genome-wide association studies (GWASs) to study the genetic correlation between PD and different cancers to identify common genetic risk factors. METHODS: We used individual data for participants of European ancestry from the Courage-PD (Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease; PD, N = 16,519) and EPITHYR (differentiated thyroid cancer, N = 3527) consortia and summary statistics of GWASs from iPDGC (International Parkinson Disease Genomics Consortium; PD, N = 482,730), Melanoma Meta-Analysis Consortium (MMAC), Breast Cancer Association Consortium (breast cancer), the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (prostate cancer), International Lung Cancer Consortium (lung cancer), and Ovarian Cancer Association Consortium (ovarian cancer) (N comprised between 36,017 and 228,951 for cancer GWASs). We estimated the genetic correlation between PD and cancers using linkage disequilibrium score regression. We studied the association between PD and polymorphisms associated with cancers, and vice versa, using cross-phenotypes polygenic risk score (PRS) analyses. RESULTS: We confirmed a previously reported positive genetic correlation of PD with melanoma (Gcorr = 0.16 [0.04; 0.28]) and reported an additional significant positive correlation of PD with prostate cancer (Gcorr = 0.11 [0.03; 0.19]). There was a significant inverse association between the PRS for ovarian cancer and PD (odds ratio [OR] = 0.89 [0.84; 0.94]). Conversely, the PRS of PD was positively associated with breast cancer (OR = 1.08 [1.06; 1.10]) and inversely associated with ovarian cancer (OR = 0.95 [0.91; 0.99]). The association between PD and ovarian cancer was mostly driven by rs183211 located in an intron of the NSF gene (17q21.31). CONCLUSIONS: We show evidence in favor of a contribution of pleiotropic genes to the association between PD and specific cancers. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Neoplasias Pulmonares , Melanoma , Neoplasias Ovarianas , Doença de Parkinson , Neoplasias da Próstata , Humanos , Masculino , Feminino , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Melanoma/epidemiologia , Melanoma/genética , Fatores de Risco
3.
Mov Disord ; 37(8): 1761-1767, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35708213

RESUMO

BACKGROUND: Pathogenic variants in the LRRK2 gene are a common monogenic cause of Parkinson's disease. However, only seven variants have been confirmed to be pathogenic. OBJECTIVES: We identified two novel LRRK2 variants (H230R and A1440P) and performed functional testing. METHODS: We transiently expressed wild-type, the two new variants, or two known pathogenic mutants (G2019S and R1441G) in HEK-293 T cells, with or without LRRK2 kinase inhibitor treatment. We characterized the phosphorylation and kinase activity of the mutants by western blotting. Thermal shift assays were performed to determine the folding and stability of the LRRK2 proteins. RESULTS: The two variants were found in two large families and segregate with the disease. They display altered LRRK2 phosphorylation and kinase activity. CONCLUSIONS: We identified two novel LRRK2 variants which segregate with the disease. The results of functional testing lead us to propose these two variants as novel causative mutations for familial Parkinson's disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Proteínas Serina-Treonina Quinases/genética
4.
Mov Disord ; 37(4): 857-864, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34997937

RESUMO

BACKGROUND: Previous prospective studies highlighted dairy intake as a risk factor for Parkinson's disease (PD), particularly in men. It is unclear whether this association is causal or explained by reverse causation or confounding. OBJECTIVE: The aim is to examine the association between genetically predicted dairy intake and PD using two-sample Mendelian randomization (MR). METHODS: We genotyped a well-established instrumental variable for dairy intake located in the lactase gene (rs4988235) within the Courage-PD consortium (23 studies; 9823 patients and 8376 controls of European ancestry). RESULTS: Based on a dominant model, there was an association between genetic predisposition toward higher dairy intake and PD (odds ratio [OR] per one serving per day = 1.70, 95% confidence interval = 1.12-2.60, P = 0.013) that was restricted to men (OR = 2.50 [1.37-4.56], P = 0.003; P-difference with women = 0.029). CONCLUSIONS: Using MR, our findings provide further support for a causal relationship between dairy intake and higher PD risk, not biased by confounding or reverse causation. Further studies are needed to elucidate the underlying mechanisms. © 2022 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Laticínios/efeitos adversos , Feminino , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Análise da Randomização Mendeliana , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
5.
Mov Disord ; 37(9): 1929-1937, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810454

RESUMO

BACKGROUND: Two studies that examined the interaction between HLA-DRB1 and smoking in Parkinson's disease (PD) yielded findings in opposite directions. OBJECTIVE: To perform a large-scale independent replication of the HLA-DRB1 × smoking interaction. METHODS: We genotyped 182 single nucleotide polymorphism (SNPs) associated with smoking initiation in 12 424 cases and 9480 controls to perform a Mendelian randomization (MR) analysis in strata defined by HLA-DRB1. RESULTS: At the amino acid level, a valine at position 11 (V11) in HLA-DRB1 displayed the strongest association with PD. MR showed an inverse association between genetically predicted smoking initiation and PD only in absence of V11 (odds ratio, 0.74, 95% confidence interval, 0.59-0.93, PInteraction  = 0.028). In silico predictions of the influence of V11 and smoking-induced modifications of α-synuclein on binding affinity showed findings consistent with this interaction pattern. CONCLUSIONS: Despite being one of the most robust findings in PD research, the mechanisms underlying the inverse association between smoking and PD remain unknown. Our findings may help better understand this association. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Predisposição Genética para Doença , Cadeias HLA-DRB1/genética , Humanos , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética , Fumar/genética
6.
Neurobiol Dis ; 157: 105426, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144124

RESUMO

LRRK2 is a highly phosphorylated multidomain protein and mutations in the gene encoding LRRK2 are a major genetic determinant of Parkinson's disease (PD). Dephosphorylation at LRRK2's S910/S935/S955/S973 phosphosite cluster is observed in several conditions including in sporadic PD brain, in several disease mutant forms of LRRK2 and after pharmacological LRRK2 kinase inhibition. However, the mechanism of LRRK2 dephosphorylation is poorly understood. We performed a phosphatome-wide reverse genetics screen to identify phosphatases involved in the dephosphorylation of the LRRK2 phosphosite S935. Candidate phosphatases selected from the primary screen were tested in mammalian cells, Xenopus oocytes and in vitro. Effects of PP2A on endogenous LRRK2 phosphorylation were examined via expression modulation with CRISPR/dCas9. Our screening revealed LRRK2 phosphorylation regulators linked to the PP1 and PP2A holoenzyme complexes as well as CDC25 phosphatases. We showed that dephosphorylation induced by different kinase inhibitor triggered relocalisation of phosphatases PP1 and PP2A in LRRK2 subcellular compartments in HEK-293 T cells. We also demonstrated that LRRK2 is an authentic substrate of PP2A both in vitro and in Xenopus oocytes. We singled out the PP2A holoenzyme PPP2CA:PPP2R2 as a powerful phosphoregulator of pS935-LRRK2. Furthermore, we demonstrated that this specific PP2A holoenzyme induces LRRK2 relocalization and triggers LRRK2 ubiquitination, suggesting its involvement in LRRK2 clearance. The identification of the PPP2CA:PPP2R2 complex regulating LRRK2 S910/S935/S955/S973 phosphorylation paves the way for studies refining PD therapeutic strategies that impact LRRK2 phosphorylation.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/metabolismo , Animais , Células HEK293 , Holoenzimas/metabolismo , Humanos , Técnicas In Vitro , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Proteínas do Tecido Nervoso/metabolismo , Oócitos/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteínas de Xenopus/metabolismo , Xenopus laevis
7.
Biochem J ; 476(19): 2797-2813, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31527116

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a promising therapeutic target for the treatment of Parkinson's disease (PD), and orally bioavailable, brain penetrant and highly potent LRRK2 kinase inhibitors are in early stages of clinical testing. Detection of LRRK2 phosphorylation, as well as phosphorylation of Rab10, a LRRK2 kinase substrate, have been proposed as target engagement biomarkers for LRRK2 inhibitor clinical trials. However, these readouts do not seem able to stratify patients based on enhanced LRRK2 kinase activity. Here, we describe a robust cell biological assay based on centrosomal cohesion alterations which were observed in peripheral blood mononuclear cell-derived lymphoblastoid cell lines (LCLs) from patients with G2019S LRRK2 mutations as compared with healthy controls, and could also be detected in a subset of sporadic PD patient samples. We suggest that LCLs may be a valuable resource for LRRK2 research, and that determination of centrosomal cohesion deficits may assist in the stratification of a subset of sporadic PD patients.


Assuntos
Centrossomo/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Leucócitos Mononucleares/metabolismo , Doença de Parkinson/metabolismo , Adulto , Idoso , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Fosforilação
8.
Biochem Soc Trans ; 45(1): 207-212, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28202674

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a complex signalling protein that is a key therapeutic target, particularly in Parkinson's disease (PD). In addition, there is now evidence showing that LRRK2 expression and phosphorylation levels have potential as markers of disease or target engagement. Indeed, reports show increases in LRRK2 protein levels in the prefrontal cortex of PD patients relative to controls, suggesting that increase in total LRRK2 protein expression is correlated with disease progression. LRRK2 phosphorylation levels are reduced in experimental systems for most disease mutants, and LRRK2 is also rapidly dephosphorylated upon LRRK2 inhibitor treatment, considered potential therapeutics. Recently, the presence of LRRK2 was confirmed in exosomes from human biofluids, including urine and cerebrospinal fluid. Moreover, phosphorylation of LRRK2 at phosphosites S910, S935, S955 and S973, as well as at the autophosphoryation site S1292, was found in urinary exosomes. In this review, we summarize knowledge on detection of LRRK2 in human biofluids and the relevance of these findings for the development of PD-related biomarkers.


Assuntos
Biomarcadores/líquido cefalorraquidiano , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/enzimologia , Córtex Pré-Frontal/enzimologia , Sequência de Aminoácidos , Biomarcadores/sangue , Biomarcadores/urina , Exossomos/enzimologia , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Fosforilação , Homologia de Sequência de Aminoácidos , Serina/genética , Serina/metabolismo
9.
Hum Mutat ; 37(12): 1340-1353, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27528516

RESUMO

Next-generation sequencing (NGS) has an established diagnostic value for inherited ataxia. However, the need of a rigorous process of analysis and validation remains challenging. Moreover, copy number variations (CNV) or dynamic expansions of repeated sequence are classically considered not adequately detected by exome sequencing technique. We applied a strategy of mini-exome coupled to read-depth based CNV analysis to a series of 33 patients with probable inherited ataxia and onset <50 years. The mini-exome consisted of the capture of 4,813 genes having associated clinical phenotypes. Pathogenic variants were found in 42% and variants of uncertain significance in 24% of the patients. These results are comparable to those from whole exome sequencing and better than previous targeted NGS studies. CNV and dynamic expansions of repeated CAG sequence were identified in three patients. We identified both atypical presentation of known ataxia genes (ATM, NPC1) and mutations in genes very rarely associated with ataxia (ERCC4, HSD17B4). We show that mini-exome bioinformatics data analysis allows the identification of CNV and dynamic expansions of repeated sequence. Our study confirms the diagnostic value of the proposed genetic analysis strategy. We also provide an algorithm for the multidisciplinary process of analysis, interpretation, and validation of NGS data.


Assuntos
Ataxia Cerebelar/genética , Variações do Número de Cópias de DNA , Exoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Adolescente , Adulto , Idade de Início , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas de Transporte/genética , Ataxia Cerebelar/etiologia , Criança , Pré-Escolar , Proteínas de Ligação a DNA/genética , Feminino , Predisposição Genética para Doença , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Glicoproteínas de Membrana/genética , Proteína C1 de Niemann-Pick , Proteína Multifuncional do Peroxissomo-2/genética , Adulto Jovem
10.
Neurobiol Dis ; 96: 312-322, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27663142

RESUMO

CAG triplet expansions in Ataxin-2 gene (ATXN2) cause spinocerebellar ataxia type 2 and have a role that remains to be clarified in Parkinson's disease (PD). To study the molecular events associated with these expansions, we sequenced them and analyzed the transcriptome from blood cells of controls and three patient groups diagnosed with spinocerebellar ataxia type 2 (herein referred to as SCA2c) or PD with or without ATXN2 triplet expansions (named SCA2p). The transcriptome profiles of these 40 patients revealed three main observations: i) a specific pattern of pathways related to cellular contacts, proliferation and differentiation associated with SCA2p group, ii) similarities between the SCA2p and sporadic PD groups in genes and pathways known to be altered in PD such as Wnt, Ephrin and Leukocyte extravasation signaling iii) RNA metabolism disturbances with "RNA-binding" and "poly(A) RNA-binding" as a common feature in all groups. Remarkably, disturbances of ALS signaling were shared between SCA2p and sporadic PD suggesting common molecular dysfunctions in PD and ALS including CACNA1, hnRNP, DDX and PABPC gene family perturbations. Interestingly, the transcriptome profiles of patients with parkinsonian phenotypes were prevalently associated with alterations of translation while SCA2c and PD patients presented perturbations of splicing. While ATXN2 RNA expression was not perturbed, its protein expression in immortalized lymphoblastoid cells was significantly decreased in SCA2c and SCA2p versus control groups assuming post-transcriptional biological perturbations. In conclusion, the transcriptome data do not exclude the role of ATXN2 mutated alleles in PD but its decrease protein expression in both SCA2c and SCA2p patients suggest a potential involvement of this gene in PD. The perturbations of "RNA-binding" and "poly(A) RNA-binding" molecular functions in the three patient groups as well as gene deregulations of factors not yet described in PD but known to be deleterious in other neurological conditions, suggest the existence of RNA-binding disturbances as a continuum between spinocerebellar ataxia type 2 and Parkinson's disease.


Assuntos
Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , RNA/metabolismo , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/metabolismo , Adulto , Idoso , Ataxina-2/metabolismo , Estudos de Casos e Controles , Progressão da Doença , Feminino , Humanos , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transcriptoma , Expansão das Repetições de Trinucleotídeos/genética
11.
Neurobiol Dis ; 63: 165-70, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24269915

RESUMO

The leucine-rich repeat kinase 2 (LRRK2) G2019S mutation is a common genetic cause of Parkinson's disease (PD). Although patients with sporadic PD and individuals with LRRK2-linked PD display the classical PD phenotype, it is not known whether or not the same biological pathways are deregulated in each context. By using transcriptome profiling, we investigated the deregulation of various biological pathways in a total of 47 peripheral blood mononuclear cell (PBMC) samples from patients with sporadic PD, patients heterozygous for the LRRK2 G2019S mutation compared to healthy controls. We found that the deregulation patterns were indeed similar in PBMCs obtained from patients with sporadic PD and from LRRK2 G2019S carriers, with dysfunctions in mitochondrial pathways, cell survival signaling, cancerization, endocytosis signaling and iron metabolism. Analysis of our PBMC data and other publicly available transcriptome datasets (for whole blood samples) showed that deregulation of the immune system, endocytosis and eukaryotic initiation factor 2 (EIF2) signaling are the main features of transcriptome profiles in PD (since they are also present in the transcriptome of dopaminergic neurons from patients). Transcriptome analysis of PBMCs is thus valuable for (i) characterizing the pathophysiological pathways shared by genetic and sporadic forms of PD and (ii) identifying potential biomarkers and therapeutic targets. This minimally invasive approach opens up tremendous perspectives for better diagnosis and therapy of neurodegenerative diseases because it can be applied from the earliest stages of the disease onwards.


Assuntos
Endocitose/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Sistema Imunitário/fisiopatologia , Doença de Parkinson , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Perfilação da Expressão Gênica , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Doença de Parkinson/genética , Doença de Parkinson/imunologia , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética
12.
Am J Hum Genet ; 89(3): 398-406, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21907011

RESUMO

Genome-wide analysis of a multi-incident family with autosomal-dominant parkinsonism has implicated a locus on chromosomal region 3q26-q28. Linkage and disease segregation is explained by a missense mutation c.3614G>A (p.Arg1205His) in eukaryotic translation initiation factor 4-gamma (EIF4G1). Subsequent sequence and genotype analysis identified EIF4G1 c.1505C>T (p.Ala502Val), c.2056G>T (p.Gly686Cys), c.3490A>C (p.Ser1164Arg), c.3589C>T (p.Arg1197Trp) and c.3614G>A (p.Arg1205His) substitutions in affected subjects with familial parkinsonism and idiopathic Lewy body disease but not in control subjects. Despite different countries of origin, persons with EIF4G1 c.1505C>T (p.Ala502Val) or c.3614G>A (p.Arg1205His) mutations appear to share haplotypes consistent with ancestral founders. eIF4G1 p.Ala502Val and p.Arg1205His disrupt eIF4E or eIF3e binding, although the wild-type protein does not, and render mutant cells more vulnerable to reactive oxidative species. EIF4G1 mutations implicate mRNA translation initiation in familial parkinsonism and highlight a convergent pathway for monogenic, toxin and perhaps virally-induced Parkinson disease.


Assuntos
Cromossomos Humanos Par 3/genética , Fator de Iniciação Eucariótico 4G/genética , Doença de Parkinson/genética , Biossíntese de Proteínas/genética , Sequência de Bases , Clonagem Molecular , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Citometria de Fluxo , Ligação Genética , Genótipo , Humanos , Imunoprecipitação , Mitocôndrias/fisiologia , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Linhagem
13.
J Parkinsons Dis ; 14(1): 111-119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38189764

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a preferred treatment for parkinsonian patients with severe motor fluctuations. Proper targeting of the STN sensorimotor segment appears to be a crucial factor for success of the procedure. The recent introduction of directional leads theoretically increases stimulation specificity in this challenging area but also requires more precise stimulation parameters. OBJECTIVE: We investigated whether commercially available software for image guided programming (IGP) could maximize the benefits of DBS by informing the clinical standard care (CSC) and improving programming workflows. METHODS: We prospectively analyzed 32 consecutive parkinsonian patients implanted with bilateral directional leads in the STN. Double blind stimulation parameters determined by CSC and IGP were assessed and compared at three months post-surgery. IGP was used to adjust stimulation parameters if further clinical refinement was required. Overall clinical efficacy was evaluated one-year post-surgery. RESULTS: We observed 78% concordance between the two electrode levels selected by the blinded IGP prediction and CSC assessments. In 64% of cases requiring refinement, IGP improved clinical efficacy or reduced mild side effects, predominantly by facilitating the use of directional stimulation (93% of refinements). CONCLUSIONS: The use of image guided programming saves time and assists clinical refinement, which may be beneficial to the clinical standard care for STN-DBS and further improve the outcomes of DBS for PD patients.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/cirurgia , Núcleo Subtalâmico/cirurgia , Resultado do Tratamento , Fluxo de Trabalho , Método Duplo-Cego
14.
NPJ Parkinsons Dis ; 10(1): 12, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191886

RESUMO

Parkinson´s disease (PD) is a common neurodegenerative movement disorder and leucine-rich repeat kinase 2 (LRRK2) is a promising therapeutic target for disease intervention. However, the ability to stratify patients who will benefit from such treatment modalities based on shared etiology is critical for the success of disease-modifying therapies. Ciliary and centrosomal alterations are commonly associated with pathogenic LRRK2 kinase activity and can be detected in many cell types. We previously found centrosomal deficits in immortalized lymphocytes from G2019S-LRRK2 PD patients. Here, to investigate whether such deficits may serve as a potential blood biomarker for PD which is susceptible to LRKK2 inhibitor treatment, we characterized patient-derived cells from distinct PD cohorts. We report centrosomal alterations in peripheral cells from a subset of early-stage idiopathic PD patients which is mitigated by LRRK2 kinase inhibition, supporting a role for aberrant LRRK2 activity in idiopathic PD. Centrosomal defects are detected in R1441G-LRRK2 and G2019S-LRRK2 PD patients and in non-manifesting LRRK2 mutation carriers, indicating that they accumulate prior to a clinical PD diagnosis. They are present in immortalized cells as well as in primary lymphocytes from peripheral blood. These findings indicate that analysis of centrosomal defects as a blood-based patient stratification biomarker may help nominate idiopathic PD patients who will benefit from LRRK2-related therapeutics.

15.
Mov Disord ; 28(12): 1740-4, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23913756

RESUMO

BACKGROUND: Variants within the leucine-rich repeat kinase 2 gene are recognized as the most frequent genetic cause of Parkinson's disease. Leucine-rich repeat kinase 2 variation related to disease susceptibility displays many features that reflect the nature of complex, late-onset sporadic disorders like Parkinson's disease. METHODS: The Genetic Epidemiology of Parkinson's Disease Consortium recently performed the largest genetic association study for variants in the leucine-rich repeat kinase 2 gene across 23 different sites in 15 countries. RESULTS: Herein, we detail the allele frequencies for the novel risk factors (p.A419V and p.M1646T) and the protective haplotype (p.N551K-R1398H-K1423K) nominated in the original publication. Simple population allele frequencies not only can provide insight into the clinical relevance of specific variants but also can help genetically define patient groups. CONCLUSIONS: Establishing individual patient-based genomic susceptibility profiles that incorporate both risk factors and protective factors will determine future diagnostic and treatment strategies.


Assuntos
Frequência do Gene , Predisposição Genética para Doença , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/genética , Estudos de Associação Genética , Genética Populacional , Genótipo , Haplótipos , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Epidemiologia Molecular , Polimorfismo de Nucleotídeo Único
16.
NPJ Parkinsons Dis ; 9(1): 21, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750568

RESUMO

Expression or phosphorylation levels of leucine-rich repeat kinase 2 (LRRK2) and its Rab substrates have strong potential as disease or pharmacodynamic biomarkers. The main objective of this study is therefore to assess the LRRK2-Rab pathway for use as biomarkers in human, non-human primate (NHP) and rat urine. With urine collected from human subjects and animals, we applied an ultracentrifugation based fractionation protocol to isolate small urinary extracellular vesicles (uEVs). We used western blot with antibodies directed against total and phosphorylated LRRK2, Rab8, and Rab10 to measure these LRRK2 and Rab epitopes in uEVs. We confirm the presence of LRRK2 and Rab8/10 in human and NHP uEVs, including total LRRK2 as well as phospho-LRRK2, phospho-Rab8 and phospho-Rab10. We also confirm LRRK2 and Rab expression in rodent uEVs. We quantified LRRK2 and Rab epitopes in human cohorts and found in a first cohort that pS1292-LRRK2 levels were elevated in individuals carrying the LRRK2 G2019S mutation, without significant differences between healthy and PD groups, whether for LRRK2 G2019S carriers or not. In a second cohort, we found that PD was associated to increased Rab8 levels and decreased pS910-LRRK2 and pS935-LRRK2. In animals, acute treatment with LRRK2 kinase inhibitors led to decreased pT73-Rab10. The identification of changes in Rab8 and LRRK2 phosphorylation at S910 and S935 heterologous phosphosites in uEVs of PD patients and pT73-Rab10 in inhibitor-dosed animals further reinforces the potential of the LRRK2-Rab pathway as a source of PD and pharmacodynamic biomarkers in uEVs.

17.
Mov Disord Clin Pract ; 10(7): 1082-1089, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37476308

RESUMO

Background: Monoallelic pathogenic variants of PRRT2 often result in paroxysmal kinesigenic dyskinesia (PKD). Little is known about health-related quality of life (HrQoL), non-motor manifestations, self-esteem, and stigma in patients with PKD. Objectives: We investigated non-motor symptoms and how they related to HrQoL in a genetically homogeneous group of PRRT2-PKD patients. We paid special attention to perceived stigmatization and self-esteem. Methods: We prospectively enrolled 21 consecutive PKD patients with a pathogenic variant of PRRT2, and 21 healthy controls matched for age and sex. They were evaluated with dedicated standardized tests for non-motor symptoms, HrQoL, anxiety, depression, stigma, self-esteem, sleep, fatigue, pain, and psychological well-being. Results: Patients reported an alteration of the physical aspects of HrQoL, regardless of the presence of residual paroxysmal episodes. Non-motor manifestations were frequent, and were an important determinant of the alteration of HrQoL. In addition, patients perceived a higher level of stigmatization which positively correlated with a delay in diagnosis (ρ = 0.615, P = 0.003) and the fear of being judged (ρ = 0.452, P = 0.04), but not with the presence of paroxysmal episodes (ρ = 0.203, P = 0.379). Conclusions: Our findings have important implications for care givers concerning patient management and medical education about paroxysmal dyskinesia. PRRT2-PKD patients should be screened for non-motor disorders in routine care. A long history of misdiagnosis may play a role in the high level of perceived stigmatization. Improving knowledge about diagnostic clues suggestive of PKD is mandatory.

18.
Ann Neurol ; 69(5): 778-92, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21391235

RESUMO

OBJECTIVE: We studied the independent and joint effects of the genes encoding alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) in Parkinson disease (PD) as part of a large meta-analysis of individual data from case-control studies participating in the Genetic Epidemiology of Parkinson's Disease (GEO-PD) consortium. METHODS: Participants of Caucasian ancestry were genotyped for a total of 4 SNCA (rs2583988, rs181489, rs356219, rs11931074) and 2 MAPT (rs1052553, rs242557) single nucleotide polymorphism (SNPs). Individual and joint effects of SNCA and MAPT SNPs were investigated using fixed- and random-effects logistic regression models. Interactions were studied on both a multiplicative and an additive scale, and using a case-control and case-only approach. RESULTS: Fifteen GEO-PD sites contributed a total of 5,302 cases and 4,161 controls. All 4 SNCA SNPs and the MAPT H1-haplotype-defining SNP (rs1052553) displayed a highly significant marginal association with PD at the significance level adjusted for multiple comparisons. For SNCA, the strongest associations were observed for SNPs located at the 3' end of the gene. There was no evidence of statistical interaction between any of the 4 SNCA SNPs and rs1052553 or rs242557, neither on the multiplicative nor on the additive scale. INTERPRETATION: This study confirms the association between PD and both SNCA SNPs and the H1 MAPT haplotype. It shows, based on a variety of approaches, that the joint action of variants in these 2 loci is consistent with independent effects of the genes without additional interacting effects.


Assuntos
Predisposição Genética para Doença , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética , alfa-Sinucleína/genética , Proteínas tau/genética , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Estudos Retrospectivos
19.
Neurology ; 98(10): e1077-e1089, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35058336

RESUMO

BACKGROUND AND OBJECTIVES: The main culprit gene for paroxysmal kinesigenic dyskinesia, characterized by brief and recurrent attacks of involuntary movements, is PRRT2. The location of the primary dysfunction associated with paroxysmal dyskinesia remains a matter of debate and may vary depending on the etiology. While striatal dysfunction has often been implicated in these patients, evidence from preclinical models indicates that the cerebellum could also play a role. We aimed to investigate the role of the cerebellum in the pathogenesis of PRRT2-related dyskinesia in humans. METHODS: We enrolled 22 consecutive right-handed patients with paroxysmal kinesigenic dyskinesia with a pathogenic variant of PRRT2 and their matched controls. Participants underwent a multimodal neuroimaging protocol. We recorded anatomic and diffusion-weighted MRI, as well as resting-state fMRI, during which we tested the aftereffects of sham and repetitive transcranial magnetic stimulation applied to the cerebellum on endogenous brain activity. We quantified the structural integrity of gray matter using voxel-based morphometry, the structural integrity of white matter using fixel-based analysis, and the strength and direction of functional cerebellar connections using spectral dynamic causal modeling. RESULTS: Patients with PRRT2 had decreased gray matter volume in the cerebellar lobule VI and in the medial prefrontal cortex, microstructural alterations of white matter in the cerebellum and along the tracts connecting the cerebellum to the striatum and the cortical motor areas, and dysfunction of cerebellar motor pathways to the striatum and the cortical motor areas, as well as abnormal communication between the associative cerebellum (Crus I) and the medial prefrontal cortex. Cerebellar stimulation modulated communication within the motor and associative cerebellar networks and tended to restore this communication to the level observed in healthy controls. DISCUSSION: Patients with PRRT2-related dyskinesia have converging structural alterations of the motor cerebellum and related pathways with a dysfunction of cerebellar output toward the cerebello-thalamo-striato-cortical network. We hypothesize that abnormal cerebellar output is the primary dysfunction in patients with a PRRT2 pathogenic variant, resulting in striatal dysregulation and paroxysmal dyskinesia. More broadly, striatal dysfunction in paroxysmal dyskinesia might be secondary to aberrant cerebellar output transmitted by thalamic relays in certain disorders. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov identifier: NCT03481491.


Assuntos
Doenças Cerebelares , Coreia , Distonia , Cerebelo/patologia , Coreia/diagnóstico por imagem , Coreia/genética , Distonia/diagnóstico por imagem , Distonia/genética , Distonia/metabolismo , Humanos , Imageamento por Ressonância Magnética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
20.
J Parkinsons Dis ; 12(1): 267-282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34633332

RESUMO

BACKGROUND: Previous studies showed that lifestyle behaviors (cigarette smoking, alcohol, coffee) are inversely associated with Parkinson's disease (PD). The prodromal phase of PD raises the possibility that these associations may be explained by reverse causation. OBJECTIVE: To examine associations of lifestyle behaviors with PD using two-sample Mendelian randomisation (MR) and the potential for survival and incidence-prevalence biases. METHODS: We used summary statistics from publicly available studies to estimate the association of genetic polymorphisms with lifestyle behaviors, and from Courage-PD (7,369 cases, 7,018 controls; European ancestry) to estimate the association of these variants with PD. We used the inverse-variance weighted method to compute odds ratios (ORIVW) of PD and 95%confidence intervals (CI). Significance was determined using a Bonferroni-corrected significance threshold (p = 0.017). RESULTS: We found a significant inverse association between smoking initiation and PD (ORIVW per 1-SD increase in the prevalence of ever smoking = 0.74, 95%CI = 0.60-0.93, p = 0.009) without significant directional pleiotropy. Associations in participants ≤67 years old and cases with disease duration ≤7 years were of a similar size. No significant associations were observed for alcohol and coffee drinking. In reverse MR, genetic liability toward PD was not associated with smoking or coffee drinking but was positively associated with alcohol drinking. CONCLUSION: Our findings are in favor of an inverse association between smoking and PD that is not explained by reverse causation, confounding, and survival or incidence-prevalence biases. Genetic liability toward PD was positively associated with alcohol drinking. Conclusions on the association of alcohol and coffee drinking with PD are hampered by insufficient statistical power.


Assuntos
Café , Doença de Parkinson , Idoso , Consumo de Bebidas Alcoólicas/epidemiologia , Consumo de Bebidas Alcoólicas/genética , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Fatores de Risco , Fumar/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA