Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
Annu Rev Biochem ; 82: 775-97, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23495938

RESUMO

Sera of camelids contain both conventional heterotetrameric antibodies and unique functional heavy (H)-chain antibodies (HCAbs). The H chain of these homodimeric antibodies consists of one antigen-binding domain, the VHH, and two constant domains. HCAbs fail to incorporate light (L) chains owing to the deletion of the first constant domain and a reshaped surface at the VHH side, which normally associates with L chains in conventional antibodies. The genetic elements composing HCAbs have been identified, but the in vivo generation of these antibodies from their dedicated genes into antigen-specific and affinity-matured bona fide antibodies remains largely underinvestigated. However, the facile identification of antigen-specific VHHs and their beneficial biochemical and economic properties (size, affinity, specificity, stability, production cost) supported by multiple crystal structures have encouraged antibody engineering of these single-domain antibodies for use as a research tool and in biotechnology and medicine.


Assuntos
Anticorpos/química , Camelus/imunologia , Cadeias Pesadas de Imunoglobulinas/química , Anticorpos de Domínio Único/química , Animais , Anticorpos/genética , Anticorpos/imunologia , Afinidade de Anticorpos , Biotecnologia , Camelídeos Americanos , Camelus/genética , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Anticorpos de Domínio Único/imunologia
2.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611711

RESUMO

The injudicious usage of antibiotics during infections caused by Gram-negative bacteria leads to the emergence of ß-lactamases. Among them, the NDM-1 enzyme poses a serious threat to human health. Developing new antibiotics or inhibiting ß-lactamases might become essential to reduce and prevent bacterial infections. Nanobodies (Nbs), the smallest antigen-binding single-domain fragments derived from Camelidae heavy-chain-only antibodies, targeting enzymes, are innovative alternatives to develop effective inhibitors. The biopanning of an immune VHH library after phage display has helped to retrieve recombinant antibody fragments with high inhibitory activity against recombinant-NDM-1 enzyme. Nb02NDM-1, Nb12NDM-1, and Nb17NDM-1 behaved as uncompetitive inhibitors against NDM-1 with Ki values in the nM range. Remarkably, IC50 values of 25.0 nM and 8.5 nM were noted for Nb02NDM-1 and Nb17NDM-1, respectively. The promising inhibition of NDM-1 by Nbs highlights their potential application in combating particular Gram-negative infections.


Assuntos
Camelus , Anticorpos de Domínio Único , Humanos , Animais , Anticorpos de Domínio Único/farmacologia , beta-Lactamases , Antibacterianos/farmacologia , Cadeias Pesadas de Imunoglobulinas
3.
Angew Chem Int Ed Engl ; : e202405823, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856634

RESUMO

Invasive fungal disease accounts for ~3.8 million deaths annually, an unacceptable rate that urgently prompts the discovery of new knowledge-driven treatments. We report the use of camelid single-domain nanobodies (Nbs) against fungal ß-1,3-glucanosyltransferases (Gel) involved in ß-1,3-glucan transglycosylation. Crystal structures of two Nbs with Gel4 from Aspergillus fumigatus revealed binding to a dissimilar CBM43 domain and a highly conserved catalytic domain across fungal species, respectively. Anti-Gel4 active site Nb3 showed significant antifungal efficacy in vitro and in vivo prophylactically and therapeutically against different A. fumigatus and Cryptococcus neoformans isolates, reducing the fungal burden and disease severity, thus significantly improving immunocompromised animal survival. Notably, C. deneoformans (serotype D) strains were more susceptible to Nb3 and genetic Gel deletion than C. neoformans (serotype A) strains, indicating a key role for ß-1,3-glucan remodelling in C. deneoformans survival. These findings add new insights about the role of b-1,3-glucan in fungal biology and demonstrate the potential of nanobodies in targeting fungal enzymes to combat invasive fungal diseases.

4.
J Immunol ; 207(10): 2608-2620, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34645688

RESUMO

IL-13 is a pleiotropic cytokine mainly secreted by Th2 cells. It reacts with many different types of cells involved in allergy, inflammation, and fibrosis, e.g., mastocytes, B cells, and fibroblasts. The role of IL-13 in conditions involving one or several of these phenotypes has therefore been extensively investigated. The inhibition of this cytokine in animal models for various pathologies yielded highly promising results. However, most human trials relying on anti-IL-13 conventional mAbs have failed to achieve a significant improvement of the envisaged disorders. Where some studies might have suffered from several weaknesses, the strategies themselves, such as targeting only IL-13 using conventional mAbs or employing a systemic administration, could be questioned. Nanobodies are recombinant Ag-binding fragments derived from the variable part of H chain-only Abs occurring in Camelidae. Thanks to their single-domain structure, small size (≈15 kDa), good stability, and solubility, they can be engineered into multispecific constructs for combined therapies or for use in new strategies such as formulations for local administration, e.g., pulmonary administration. In this study, we describe the generation of 38 nanobodies that can be subdivided into five CDR3 families. Nine nanobodies were found to have a good affinity profile (KD = 1-200 nM), but none were able to strongly inhibit IL-13 biological activity in vitro (IC50 > 50 µM: HEK-Blue IL-13/IL-4 cells). Multimeric constructs were therefore designed from these inhibitors and resulted in an up to 36-fold improvement in affinity and up to 300-fold enhancement of the biological activity while conserving a high specificity toward IL-13.


Assuntos
Anticorpos Neutralizantes/imunologia , Afinidade de Anticorpos/imunologia , Interleucina-13/antagonistas & inibidores , Interleucina-13/imunologia , Anticorpos de Domínio Único/imunologia , Humanos
5.
J Nanobiotechnology ; 21(1): 371, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821897

RESUMO

BACKGROUND: The opening of pannexin1 channels is considered as a key event in inflammation. Pannexin1 channel-mediated release of adenosine triphosphate triggers inflammasome signaling and activation of immune cells. By doing so, pannexin1 channels play an important role in several inflammatory diseases. Although pannexin1 channel inhibition could represent a novel clinical strategy for treatment of inflammatory disorders, therapeutic pannexin1 channel targeting is impeded by the lack of specific, potent and/or in vivo-applicable inhibitors. The goal of this study is to generate nanobody-based inhibitors of pannexin1 channels. RESULTS: Pannexin1-targeting nanobodies were developed as potential new pannexin1 channel inhibitors. We identified 3 cross-reactive nanobodies that showed affinity for both murine and human pannexin1 proteins. Flow cytometry experiments revealed binding capacities in the nanomolar range. Moreover, the pannexin1-targeting nanobodies were found to block pannexin1 channel-mediated release of adenosine triphosphate. The pannexin1-targeting nanobodies were also demonstrated to display anti-inflammatory effects in vitro through reduction of interleukin 1 beta amounts. This anti-inflammatory outcome was reproduced in vivo using a human-relevant mouse model of acute liver disease relying on acetaminophen overdosing. More specifically, the pannexin1-targeting nanobodies lowered serum levels of inflammatory cytokines and diminished liver damage. These effects were linked with alteration of the expression of several NLRP3 inflammasome components. CONCLUSIONS: This study introduced for the first time specific, potent and in vivo-applicable nanobody-based inhibitors of pannexin1 channels. As demonstrated for the case of liver disease, the pannexin1-targeting nanobodies hold great promise as anti-inflammatory agents, yet this should be further tested for extrahepatic inflammatory disorders. Moreover, the pannexin1-targeting nanobodies represent novel tools for fundamental research regarding the role of pannexin1 channels in pathological and physiological processes.


Assuntos
Hepatopatias , Anticorpos de Domínio Único , Animais , Humanos , Camundongos , Trifosfato de Adenosina , Anti-Inflamatórios , Inflamassomos , Inflamação/tratamento farmacológico , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/uso terapêutico
6.
Proc Natl Acad Sci U S A ; 117(20): 10848-10855, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32371486

RESUMO

Grapevine fanleaf virus (GFLV) is a picorna-like plant virus transmitted by nematodes that affects vineyards worldwide. Nanobody (Nb)-mediated resistance against GFLV has been created recently, and shown to be highly effective in plants, including grapevine, but the underlying mechanism is unknown. Here we present the high-resolution cryo electron microscopy structure of the GFLV-Nb23 complex, which provides the basis for molecular recognition by the Nb. The structure reveals a composite binding site bridging over three domains of one capsid protein (CP) monomer. The structure provides a precise mapping of the Nb23 epitope on the GFLV capsid in which the antigen loop is accommodated through an induced-fit mechanism. Moreover, we uncover and characterize several resistance-breaking GFLV isolates with amino acids mapping within this epitope, including C-terminal extensions of the CP, which would sterically interfere with Nb binding. Escape variants with such extended CP fail to be transmitted by nematodes linking Nb-mediated resistance to vector transmission. Together, these data provide insights into the molecular mechanism of Nb23-mediated recognition of GFLV and of virus resistance loss.


Assuntos
Nepovirus/efeitos dos fármacos , Doenças das Plantas/imunologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/farmacologia , Animais , Anticorpos Antivirais/imunologia , Capsídeo/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/efeitos dos fármacos , Microscopia Crioeletrônica , Epitopos/química , Modelos Moleculares , Nematoides/virologia , Nepovirus/ultraestrutura , Doenças das Plantas/virologia , Folhas de Planta/virologia , Vírus de Plantas/imunologia , Vírus de Plantas/fisiologia , Conformação Proteica , Vitis
7.
Anal Chem ; 94(28): 10054-10061, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35786874

RESUMO

High-quality affinity probes are critical for sensitive and specific protein detection, in particular for detection of protein biomarkers in the early phases of disease development. Proximity extension assays (PEAs) have been used for high-throughput multiplexed protein detection of up to a few thousand different proteins in one or a few microliters of plasma. Clonal affinity reagents can offer advantages over the commonly used polyclonal antibodies (pAbs) in terms of reproducibility and standardization of such assays. Here, we explore nanobodies (Nbs) as an alternative to pAbs as affinity reagents for PEA. We describe an efficient site-specific approach for preparing high-quality oligo-conjugated Nb probes via enzyme coupling using Sortase A (SrtA). The procedure allows convenient removal of unconjugated affinity reagents after conjugation. The purified high-grade Nb probes were used in PEA, and the reactions provided an efficient means to select optimal pairs of binding reagents from a group of affinity reagents. We demonstrate that Nb-based PEA (nano-PEA) for interleukin-6 (IL6) detection can augment assay performance, compared to the use of pAb probes. We identify and validate Nb combinations capable of binding in pairs without competition for IL6 antigen detection by PEA.


Assuntos
Anticorpos de Domínio Único , Anticorpos , Indicadores e Reagentes , Interleucina-6 , Oligonucleotídeos , Reprodutibilidade dos Testes
8.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430166

RESUMO

Ovarian cancer ranks fifth in cancer-related deaths among women. Since ovarian cancer patients are often asymptomatic, most patients are diagnosed only at an advanced stage of disease. This results in a 5-year survival rate below 50%, which is in strong contrast to a survival rate as high as 94% if detected and treated at an early stage. Monitoring serum biomarkers offers new possibilities to diagnose ovarian cancer at an early stage. In this study, nanobodies targeting the ovarian cancer biomarkers human epididymis protein 4 (HE4), secretory leukocyte protease inhibitor (SLPI), and progranulin (PGRN) were evaluated regarding their expression levels in bacterial systems, epitope binning, and antigen-binding affinity by enzyme-linked immunosorbent assay and surface plasmon resonance. The selected nanobodies possess strong binding affinities for their cognate antigens (KD~0.1-10 nM) and therefore have a pronounced potential to detect ovarian cancer at an early stage. Moreover, it is of utmost importance that the limits of detection (LOD) for these biomarkers are in the pM range, implying high specificity and sensitivity, as demonstrated by values in human serum of 37 pM for HE4, 163 pM for SLPI, and 195 pM for PGRN. These nanobody candidates could thus pave the way towards multiplexed biosensors.


Assuntos
Neoplasias Ovarianas , Anticorpos de Domínio Único , Humanos , Feminino , Detecção Precoce de Câncer , Carcinoma Epitelial do Ovário , Neoplasias Ovarianas/diagnóstico , Biomarcadores Tumorais , Progranulinas
9.
Anal Chem ; 93(40): 13606-13614, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34585567

RESUMO

Detection of antigenic biomarkers present in trace amounts is of crucial importance for medical diagnosis. A parasitic disease, human toxocariasis, lacks an adequate diagnostic method despite its worldwide occurrence. The currently used serology tests may stay positive even years after a possibly unnoticed infection, whereas the direct detection of a re-infection or a still active infection remains a diagnostic challenge due to the low concentration of circulating parasitic antigens. We report a time-efficient sandwich immunosensor using small recombinant single-domain antibodies (nanobodies) derived from camelid heavy-chain antibodies specific to Toxocara canis antigens. An enhanced sensitivity to pg/mL levels is achieved by using a redox cycle consisting of a photocatalytic oxidation and electrochemical reduction steps. The photocatalytic oxidation is achieved by a photosensitizer generating singlet oxygen (1O2) that, in turn, readily reacts with p-nitrophenol enzymatically produced under alkaline conditions. The photooxidation produces benzoquinone that is electrochemically reduced to hydroquinone, generating an amperometric response. The light-driven process could be easily separated from the background, thus making amperometric detection more reliable. The proposed method for detection of the toxocariasis antigen marker shows superior performances compared to other detection schemes with the same nanobodies and outperforms by at least two orders of magnitude the assays based on regular antibodies, thus suggesting new opportunities for electrochemical immunoassays of challenging low levels of antigens.


Assuntos
Técnicas Biossensoriais , Toxocara canis , Toxocaríase , Animais , Técnicas Eletroquímicas , Humanos , Imunoensaio , Limite de Detecção , Oxirredução
10.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34830219

RESUMO

Uncontrolled growth of solid tumors will result in a hallmark hypoxic condition, whereby the key transcriptional regulator of hypoxia inducible factor-1α (HIF-1α) will be stabilized to activate the transcription of target genes that are responsible for the metabolism, proliferation, and metastasis of tumor cells. Targeting and inhibiting the transcriptional activity of HIF-1 may provide an interesting strategy for cancer therapy. In the present study, an immune library and a synthetic library were constructed for the phage display selection of Nbs against recombinant PAS B domain protein (rPasB) of HIF-1α. After panning and screening, seven different nanobodies (Nbs) were selected, of which five were confirmed via immunoprecipitation to target the native HIF-1α subunit. The inhibitory effect of the selected Nbs on HIF-1 induced activation of target genes has been evaluated after intracellular expression of these Nbs in HeLa cells. The dramatic inhibition of both intrabody formats on the expression of HIF-1-related target genes has been confirmed, which indicated the inhibitory efficacy of selected Nbs on the transcriptional activity of HIF-1.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Anticorpos de Domínio Único/farmacologia , Transcrição Gênica/efeitos dos fármacos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Hipóxia Celular/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Domínios Proteicos/genética , Domínios Proteicos/imunologia , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/metabolismo , Transfecção , Neoplasias do Colo do Útero/patologia
11.
Int J Mol Sci ; 22(7)2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800706

RESUMO

Gap junctions and connexin hemichannels mediate intercellular and extracellular communication, respectively. While gap junctions are seen as the "good guys" by controlling homeostasis, connexin hemichannels are considered as the "bad guys", as their activation is associated with the onset and dissemination of disease. Open connexin hemichannels indeed mediate the transport of messengers between the cytosol and extracellular environment and, by doing so, fuel inflammation and cell death in a plethora of diseases. The present mini-review discusses the mechanisms involved in the activation of connexin hemichannels during pathology.


Assuntos
Membrana Celular/metabolismo , Conexinas/metabolismo , Junções Comunicantes/fisiologia , Inflamação/metabolismo , Animais , Morte Celular , Conexina 43/metabolismo , Citosol/metabolismo , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Moléculas com Motivos Associados a Patógenos , Peptídeos/química , Fosforilação , Estresse Mecânico
12.
Nanomedicine ; 24: 102103, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31669421

RESUMO

Matrix metalloproteinase-2 (MMP-2) is an endopeptidase involved in cardiovascular disease and cancer. To date, no highly selective MMP-2 inhibitors have been identified for potential use in humans. Aim of our work was to apply the nanobody technology to the generation of highly selective inhibitors of human MMP-2 and to assess their effects on platelet function and their applicability as conjugated nanobodies. We constructed a nanobody library after immunising an alpaca with human active MMP-2 and identified, after phage display and screening, one MMP-2 inhibitory nanobody (VHH-29), able to hinder the effects of MMP-2 on platelet activation, and one nanobody not inhibiting MMP-2 activity (VHH-136) which, chemically conjugated to a fluorescent probe, allowed the detection of human MMP-2 by flow-cytometry and immune-cytochemistry. In conclusion, we have generated and characterized two new nanotechnological molecular tools for human MMP-2 which represent promising agents for the study of MMP-2 in cardiovascular pathophysiology.


Assuntos
Citometria de Fluxo , Metaloproteinase 2 da Matriz/imunologia , Biblioteca de Peptídeos , Anticorpos de Domínio Único , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia
13.
Int J Mol Sci ; 21(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906437

RESUMO

Nanobodies (Nbs) are the smallest antigen-binding, single domain fragments derived from heavy-chain-only antibodies from Camelidae. Among the several advantages over conventional monoclonal antibodies, their small size (12-15 kDa) allows them to extravasate rapidly, to show improved tissue penetration, and to clear rapidly from blood, which are important characteristics for cancer imaging and targeted radiotherapy. Herein, we identified Nbs against CD33, a marker for acute myeloid leukemia (AML). A total of 12 Nbs were generated against recombinant CD33 protein, out of which six bound natively CD33 protein, expressed on the surface of acute myeloid leukemia THP-1 cells. The equilibrium dissociation constants (KD) of these six Nbs and CD33 range from 4 to 270 nM, and their melting temperature (Tm) varies between 52.67 and 67.80 °C. None of these Nbs showed leukemogenicity activity in vitro. The selected six candidates were radiolabeled with 99mTc, and their biodistribution was evaluated in THP-1-tumor-bearing mice. The imaging results demonstrated the fast tumor-targeting capacity of the Nbs in vivo. Among the anti-CD33 Nbs, Nb_7 showed the highest tumor uptake (2.53 ± 0.69 % injected activity per gram (IA/g), with low background signal, except in the kidneys and bladder. Overall, Nb_7 exhibits the best characteristics to be used as an anti-CD33 targeting vehicle for future diagnostic or therapeutic applications.


Assuntos
Leucemia Mieloide Aguda/imunologia , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Anticorpos de Domínio Único/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Epitopos/imunologia , Feminino , Humanos , Cinética , Camundongos , Camundongos SCID , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Anticorpos de Domínio Único/genética , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único , Temperatura de Transição
14.
Anal Chem ; 91(18): 11582-11588, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31429269

RESUMO

Human toxocariasis (HT) is a cosmopolitan zoonotic disease caused by the migration of the larval stage of the roundworm Toxocara canis. Current HT diagnostic methods do not discriminate between active and past infections. Here, we present a method to quantify Toxocara excretory/secretory antigen, aiming to identify active cases of HT. High specificity is achieved by employing nanobodies (Nbs), single domain antigen binding fragments from camelid heavy chain-only antibodies. High sensitivity is obtained by the design of an electrochemical magnetosensor with an amperometric read-out. Reliable detection of TES antigen at 10 and 30 pg/mL level was demonstrated in phosphate buffered saline and serum, respectively. Moreover, the assay showed no cross-reactivity with other nematode antigens. To our knowledge, this is the most sensitive method to quantify the TES antigen so far. It also has great potential to develop point of care diagnostic systems in other conditions where high sensitivity and specificity are required.


Assuntos
Antígenos de Helmintos/análise , Técnicas Eletroquímicas/métodos , Anticorpos de Domínio Único/imunologia , Toxocara canis/química , Animais , Antígenos de Helmintos/imunologia , Camelidae , Separação Imunomagnética , Limite de Detecção
15.
Immunogenetics ; 71(4): 307-320, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30656359

RESUMO

Camelid ungulates produce homodimeric heavy chain-only antibodies (HCAbs) in addition to conventional antibodies consisting of paired heavy and light chains. In the llama, HCAbs are made up by at least two subclasses (long-hinge IgG2b and short-hinge IgG2c HCAbs vs. conventional heterotetrameric IgG1s). Here, we generated murine monoclonal antibodies (mAbs) specific for the hinge-CH2 boundary of llama IgG2b (mAb 1C10) and the Fc of llama IgG2c HCAbs (mAb 5E4). Flow cytometric analysis of llama peripheral blood lymphocytes revealed that IgG1+, IgG2b+ and IgG2c+ B cells could be distinguished using mAbs 1C10/5E4 but had equivalent expression of three other cell-surface markers. MiSeq sequencing of the peripheral B cell repertoires of three llamas showed that (i) IgG2b and IgG2c HCAbs were present in similar proportions in the repertoire, (ii) a subset of IgG2b and IgG2c HCAbs, but not IgG1s, entirely lacked a hinge exon and showed direct VHH-CH2 splicing; these "hingeless" HCAbs were clonally expanded, somatically mutated and derived from hinged HCAb precursors, (iii) substantial repertoire overlap existed between IgG subclasses, especially between IgG2b and IgG2c HCAbs, (iv) the complementarity-determining region (CDR)-H3 length distributions of IgG2b and IgG2c HCAbs were broader and biased towards longer lengths compared with IgG1s due to increased N-nucleotide addition, (v) IgG2b and IgG2c HCAbs used a more restricted set of IGHV genes compared with IgG1s, and (vi) IgG2b and IgG2c HCAbs had elevated somatic mutations rates of both CDRs and framework regions (FRs) compared with IgG1s, especially of CDR-H1 and FR3. The distinct molecular features of llama IgG1, IgG2b and IgG2c antibodies imply that these subclasses may have divergent immunological functions and suggest that specific mechanisms operate to diversify HCAb repertoires in the absence of a light chain.


Assuntos
Anticorpos Monoclonais/imunologia , Linfócitos B/imunologia , Camelídeos Americanos/imunologia , Regiões Determinantes de Complementaridade/imunologia , Imunoglobulina G/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Animais , Linfócitos B/metabolismo , Camelídeos Americanos/genética , Regiões Determinantes de Complementaridade/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Imunogenética/métodos , Imunoglobulina G/genética , Cadeias Pesadas de Imunoglobulinas/genética , Imunofenotipagem/métodos , Camundongos
16.
FASEB J ; 32(6): 3411-3422, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401625

RESUMO

Sepsis-leading to septic shock-is the leading cause of death in intensive care units. The systemic inflammatory response to infection, which is initiated by activated myeloid cells, plays a key role in the lethal outcome. Macrophage migration inhibitory factor (MIF) is an upstream immunoregulatory mediator, released by myeloid cells, that underlies a common genetic susceptibility to different infections and septic shock. Accordingly, strategies that are aimed at inhibiting the action of MIF have therapeutic potential. Here, we report the isolation and characterization of tailorable, small, affinity-matured nanobodies (Nbs; single-domain antigen-binding fragments derived from camelid heavy-chain Abs) directed against MIF. Of importance, these bioengineered Nbs bind both human and mouse MIFs with nanomolar affinity. NbE5 and NbE10 inhibit key MIF functions that can exacerbate septic shock, such as the tautomerase activity of MIF (by blocking catalytic pocket residues that are critical for MIF's conformation and receptor binding), the TNF-inducing potential, and the ability of MIF to antagonize glucocorticoid action. A lead NbE10, tailored to be a multivalent, half-life extended construct (NbE10-NbAlb8-NbE10), attenuated lethality in murine endotoxemia when administered via single injection, either prophylactically or therapeutically. Hence, Nbs, with their structural and pharmacologic advantages over currently available inhibitors, may be an effective, novel approach to interfere with the action of MIF in septic shock and other conditions of inflammatory end-organ damage.-Sparkes, A., De Baetselier, P., Brys, L., Cabrito, I., Sterckx, Y. G.-J., Schoonooghe, S., Muyldermans, S., Raes, G., Bucala, R., Vanlandschoot, P., Van Ginderachter, J. A., Stijlemans, B. Novel half-life extended anti-MIF nanobodies protect against endotoxic shock.


Assuntos
Oxirredutases Intramoleculares/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Choque Séptico/tratamento farmacológico , Anticorpos de Domínio Único/farmacologia , Animais , Feminino , Meia-Vida , Humanos , Oxirredutases Intramoleculares/imunologia , Lipopolissacarídeos/toxicidade , Fatores Inibidores da Migração de Macrófagos/imunologia , Camundongos , Choque Séptico/induzido quimicamente , Choque Séptico/imunologia , Choque Séptico/patologia , Anticorpos de Domínio Único/imunologia
17.
Int J Mol Sci ; 20(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569768

RESUMO

Current cancer therapeutics suffer from a lack of specificity in targeting tumor cells and cause severe side effects. Therefore, the design of highly specialized drugs comprising antibody derivatives inducing apoptosis in targeted cancer cells is considered to be a promising strategy. Drugs acting on death receptor 5 (DR5) such as DR5 agonist antibodies replacing "TNF-related apoptosis-inducing ligand" (TRAIL) offer feasible opportunities in this direction. Although such agonists provided good antitumor activity in preclinical studies, they were less effective in clinical studies, possibly due to a disturbed Fc interaction with Fc-γ receptors. Thus, multimerized antigen binding fragments without Fc have been proposed to increase their efficacy. We generated nanobodies (Nbs), recombinant variable domains of heavy chain-only antibodies of camelids, against the DR5 ectodomain. Nb24 and Nb28 had an affinity in the nM and sub-nM range, but only Nb28 competes with TRAIL for binding to DR5. Bivalent, trivalent, and tetravalent constructs were generated, as well as an innovative pentameric Nb complex, to provoke avidity effects. In our cellular assays, these trimeric, tetrameric, and pentameric Nbs have a higher apoptotic capacity than monomeric Nbs and seem to mimic the activity of the natural TRAIL ligand on various cancer cells.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Anticorpos de Domínio Único/farmacologia , Animais , Antineoplásicos Imunológicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Epitopos/química , Epitopos/imunologia , Epitopos/metabolismo , Humanos , Camundongos , Ligação Proteica , Receptores de IgG/química , Receptores de IgG/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/química , Proteínas Recombinantes , Anticorpos de Domínio Único/química , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Int J Mol Sci ; 20(13)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288389

RESUMO

Nanobody against V-set and Ig domain-containing 4 (Vsig4) on tissue macrophages, such as synovial macrophages, could visualize joint inflammation in multiple experimental arthritis models via single-photon emission computed tomography imaging. Here, we further addressed the specificity and assessed the potential for arthritis monitoring using near-infrared fluorescence (NIRF) Cy7-labeled Vsig4 nanobody (Cy7-Nb119). In vivo NIRF-imaging of collagen-induced arthritis (CIA) was performed using Cy7-Nb119. Signals obtained with Cy7-Nb119 or isotope control Cy7-NbBCII10 were compared in joints of naive mice versus CIA mice. In addition, pathological microscopy and fluorescence microscopy were used to validate the arthritis development in CIA. Cy7-Nb119 accumulated in inflamed joints of CIA mice, but not the naive mice. Development of symptoms in CIA was reflected in increased joint accumulation of Cy7-Nb119, which correlated with the conventional measurements of disease. Vsig4 is co-expressed with F4/80, indicating targeting of the increasing number of synovial macrophages associated with the severity of inflammation by the Vsig4 nanobody. NIRF imaging with Cy7-Nb119 allows specific assessment of inflammation in experimental arthritis and provides complementary information to clinical scoring for quantitative, non-invasive and economical monitoring of the pathological process. Nanobody labelled with fluorescence can also be used for ex vivo validation experiments using flow cytometry and fluorescence microscopy.


Assuntos
Artrite Experimental/diagnóstico , Artrite Experimental/metabolismo , Macrófagos/metabolismo , Imagem Molecular/métodos , Receptores de Complemento , Anticorpos de Domínio Único , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Animais , Imunofluorescência , Corantes Fluorescentes/química , Imuno-Histoquímica , Macrófagos/imunologia , Masculino , Camundongos , Microscopia de Fluorescência , Modelos Moleculares , Estrutura Molecular , Receptores de Complemento/imunologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Espectroscopia de Luz Próxima ao Infravermelho , Coloração e Rotulagem , Membrana Sinovial/imunologia
20.
Plant Biotechnol J ; 16(2): 660-671, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28796912

RESUMO

Since their discovery, single-domain antigen-binding fragments of camelid-derived heavy-chain-only antibodies, also known as nanobodies (Nbs), have proven to be of outstanding interest as therapeutics against human diseases and pathogens including viruses, but their use against phytopathogens remains limited. Many plant viruses including Grapevine fanleaf virus (GFLV), a nematode-transmitted icosahedral virus and causal agent of fanleaf degenerative disease, have worldwide distribution and huge burden on crop yields representing billions of US dollars of losses annually, yet solutions to combat these viruses are often limited or inefficient. Here, we identified a Nb specific to GFLV that confers strong resistance to GFLV upon stable expression in the model plant Nicotiana benthamiana and also in grapevine rootstock, the natural host of the virus. We showed that resistance was effective against a broad range of GFLV isolates independently of the inoculation method including upon nematode transmission but not against its close relative, Arabis mosaic virus. We also demonstrated that virus neutralization occurs at an early step of the virus life cycle, prior to cell-to-cell movement. Our findings will not only be instrumental to confer resistance to GFLV in grapevine, but more generally they pave the way for the generation of novel antiviral strategies in plants based on Nbs.


Assuntos
Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Nepovirus/patogenicidade , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA