Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(41): e2202261119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36206369

RESUMO

Global change is altering the vast amount of carbon cycled by microbes between land and freshwater, but how viruses mediate this process is poorly understood. Here, we show that viruses direct carbon cycling in lake sediments, and these impacts intensify with future changes in water clarity and terrestrial organic matter (tOM) inputs. Using experimental tOM gradients within sediments of a clear and a dark boreal lake, we identified 156 viral operational taxonomic units (vOTUs), of which 21% strongly increased with abundances of key bacteria and archaea, identified via metagenome-assembled genomes (MAGs). MAGs included the most abundant prokaryotes, which were themselves associated with dissolved organic matter (DOM) composition and greenhouse gas (GHG) concentrations. Increased abundances of virus-like particles were separately associated with reduced bacterial metabolism and with shifts in DOM toward amino sugars, likely released by cell lysis rather than higher molecular mass compounds accumulating from reduced tOM degradation. An additional 9.6% of vOTUs harbored auxiliary metabolic genes associated with DOM and GHGs. Taken together, these different effects on host dynamics and metabolism can explain why abundances of vOTUs rather than MAGs were better overall predictors of carbon cycling. Future increases in tOM quantity, but not quality, will change viral composition and function with consequences for DOM pools. Given their importance, viruses must now be explicitly considered in efforts to understand and predict the freshwater carbon cycle and its future under global environmental change.


Assuntos
Gases de Efeito Estufa , Vírus , Amino Açúcares/metabolismo , Bactérias/genética , Bactérias/metabolismo , Carbono/metabolismo , Ciclo do Carbono , Gases de Efeito Estufa/metabolismo , Lagos/microbiologia , Vírus/genética , Vírus/metabolismo , Água/metabolismo
2.
Int J Phytoremediation ; 24(9): 963-974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34647850

RESUMO

Facilitating the establishment of native pioneer plant species on mine tailings with inherent metal and/or acid tolerance is important to speed up natural succession at minimal cost, especially in remote areas where phytoremediation can be labor intensive. We investigated vegetation community dynamics after ∼48 years of succession along two legacy Ni-Cu mine tailings and waste rock deposits in the Sudbury Basin, Ontario, Canada with and without various site amendments (i.e. liming and fertilization) and planting. Metal/acid tolerant pioneer plants (Betula papyrifera, Populus tremuloides, Pohlia nutans) appeared to facilitate the establishment of less tolerant species. Conifers and nitrogen-fixers less tolerant to site conditions were planted at the fully amended (limed, fertilized, planted) mine tailings site in the 1970s, but conifers were not propagating at the site or facilitating understory succession. The planted nitrogen-fixing leguminous species Lotus corniculatus was, however, associated with increased diversity. These findings have implications for long-term reclamation strategies in acidic mine waste deposits utilizing native species, as primary colonizing tree species are only recently emerging as candidates for phytoremediation. Novelty statement The potential for native species to act as facilitators for vegetation colonization has rarely been investigated on tailings, despite wide use in remediation of less toxic sites. This study provides a retrospective of over 40 years of plant growth following initial treatment of toxic tailings. We observed that regardless of tailings geochemical conditions, acid/metal tolerant pioneer plants were facilitating ecological succession on acidic Ni-Cu mine tailings sites.


Assuntos
Poluentes do Solo , Biodegradação Ambiental , Metais , Nitrogênio , Plantas , Estudos Retrospectivos , Solo , Poluentes do Solo/análise
3.
Environ Microbiol ; 23(7): 3384-3400, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-31943734

RESUMO

The Gypsum Hill (GH) springs on Axel Heiberg Island in the Canadian high Arctic are host to chemolithoautotrophic, sulfur-oxidizing streamers that flourish in the high Arctic winter in water temperatures from -1.3 to 7°C with ~8% salinity in a high Arctic winter environment with air temperatures commonly less than -40°C and an average annual air temperature of -15°C. Metagenome sequencing and binning of streamer samples produced a 96% complete Thiomicrorhabdus sp. metagenome-assembled genome representing a possible new species or subspecies. This is the most cold- and salt-extreme source environment for a Thiomicrorhabdus genome yet described. Metaproteomic and metatranscriptomic analysis attributed nearly all gene expression in the streamers to the Thiomicrorhabdus sp. and suggested that it is active in CO2 fixation and oxidation of sulfide to elemental sulfur. In situ geochemical and isotopic analyses of the fractionation of multiple sulfur isotopes determined the biogeochemical transformation of sulfur from its source in Carboniferous evaporites to biotic processes occurring in the sediment and streamers. These complementary molecular tools provided a functional link between the geochemical substrates and the collective traits and activity that define the microbial community's interactions within a unique polar saline habitat where Thiomicrorhabdus-dominated streamers form and flourish.


Assuntos
Enxofre , Canadá , DNA Bacteriano , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA
4.
Ecol Appl ; 30(4): e02077, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31971643

RESUMO

Riparian zones contain areas of strong hydrological connectivity between land and stream, referred to as variable source areas (VSAs), and are considered biogeochemical control points. However, little is known about whether VSAs influence stream communities and whether this connectivity is affected by forest management. To address this, we used multiple biotic and abiotic indicators to (1) examine the influence of VSAs on riparian vegetation and stream ecosystems by comparing VSA and non-VSA reaches and (2) explore how forest management may affect the influence of VSAs on stream ecosystems. We detected some significant differences between VSA and non-VSA reaches in the riparian vegetation (greater understory and lower tree density) and stream ecosystem indicators (greater dissolved organic matter aromaticity, microbial biomass, peroxidase activity and collector-gatherer density, and lower dissolved organic carbon concentrations, algal biomass, and predatory macroinvertebrate density), which suggests that VSAs may create a more heterotrophic ecosystem locally. However, we show some evidence that forest management activities (specifically, road density) can alter the influence of VSAs and eliminate the differences observed at lower forest management intensities, and that the most hydrologically connected areas seem more sensitive to disturbance. Therefore, we suggest that the heterogeneity in hydrological connectivity along riparian zones should be considered when planning forest harvesting operations and road building (e.g., wider riparian buffers around VSAs).


Assuntos
Ecossistema , Rios , Biomassa , Florestas , Árvores
5.
Microb Ecol ; 80(3): 593-602, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32388577

RESUMO

Peatlands are important players in climate change-biosphere feedbacks via long-term net carbon (C) accumulation in soil organic matter and as potential net C sources including the potent greenhouse gas methane (CH4). Interactions of climate, site-hydrology, plant community, and groundwater chemical factors influence peatland development and functioning, including C dioxide (CO2) and CH4 fluxes, but the role of microbial community composition is not well understood. To assess microbial functional and taxonomic dissimilarities, we used high throughput sequencing of the small subunit ribosomal DNA (SSU rDNA) to determine bacterial and archaeal community composition in soils from twenty North American peatlands. Targeted DNA metabarcoding showed that although Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla on average, intermediate and rich fens hosted greater diversity and taxonomic richness, as well as an array of candidate phyla when compared with acidic and nutrient-poor poor fens and bogs. Moreover, pH was revealed to be the strongest predictor of microbial community structure across sites. Predictive metagenome content (PICRUSt) showed increases in specific genes, such as purine/pyrimidine and amino-acid metabolism in mid-latitude peatlands from 38 to 45° N, suggesting a shift toward utilization of microbial biomass over utilization of initial plant biomass in these microbial communities. Overall, there appears to be noticeable differences in community structure between peatland classes, as well as differences in microbial metabolic activity between latitudes. These findings are in line with a predicted increase in the decomposition and accelerated C turnover, and suggest that peatlands north of 37° latitude may be particularly vulnerable to climate change.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Clima , Microbiota , Áreas Alagadas , Ontário , Microbiologia do Solo , Estados Unidos
6.
J Environ Manage ; 263: 110351, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32174518

RESUMO

Floating treatment wetlands (FTW)s that can uptake nutrients and metals from water, and/or trap suspended solids in their roots, are becoming viable options to treat urban, agriculture and sewage runoffs. However, current FTW designs favor aerobic processes and short-term storage of metals, which are ineffective in acid mine drainage (AMD) environments. Many also function poorly in northern latitudes with strong seasonality and several months of sub-zero temperatures. In this study, we designed a novel FTWs with 20 cm soil profile to test its ability to sustain anaerobic microbial processes, such as iron and sulfate reduction and remain functional after freezing conditions of winter months. Three different plants, Carex lacustris, Typha latifolia, and Juncus canadensis were used to test in our FTWs, which were deployed in a mining-impacted water in Sudbury, ON, Canada. Porewater samples were acquired using built-in porewater peepers. Low to moderately reducing conditions, along with presence of ferrous iron and hydrogen sulfide in the porewater of all FTWs was prevalent, irrespective of the constituent vegetation type. Moreover, as well as a ~30% increase in sulfate-reducing bacteria (SRB) richness and ~100% increase in SRB abundance between years, was the evidence that anaerobic processes were occurring in these shallow FTWs. From this study we estimated that during its lifetime, one shallow FTW can treat ~61 m3 of sulfate-rich water, thus offering an alternative way to capture sulfate and other metals from mining-impacted waters.


Assuntos
Poluentes Químicos da Água/análise , Áreas Alagadas , Canadá , Mineração , Sulfatos/análise
7.
J Environ Manage ; 228: 93-102, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30212679

RESUMO

A growth chamber trial was conducted to investigate the effects of blends of pulp and paper mill residuals and forest humus on soil properties, microbial communities and germination rate and biomass production of annual ryegrass (Lolium multiflorum) in both acid-producing and neutral to mildly alkaline mine tailings in a mine reclamation context. The organic residual amendments improved the nutritional status of the tailings substrates, and increased pH in acid-generating tailings, leading to higher germination rates and improved plant growth. A trace addition (<0.02% of sludge by dry weight) of natural forest floor material as a microbial inoculum to the sludge could increase plant biomass up to four-fold. The effects of sludge application on bioavailability of metals were variable, with the concentration of soluble copper (Cu) and nickel (Ni) increasing in some of the substrates following organic amendments. Addition of paper mill residuals to mine tailings modified the microbial communities observed in the oligotrophic tailings with the majority of DNA sequences in the sludge amended substrates being found to be closely related to heterotrophic bacterial species rather than the chemolithotrophic communities that dominate tailings environments.


Assuntos
Inoculantes Agrícolas/metabolismo , Cobre/química , Metais/química , Poluentes do Solo/análise , Inoculantes Agrícolas/química , Bactérias , Biomassa , Florestas , Desenvolvimento Vegetal , Plantas , Esgotos/análise , Esgotos/química , Solo
8.
Can J Microbiol ; 63(2): 137-152, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28071137

RESUMO

Environmental oxidation and microbial metabolism drive production of acid mine drainage (AMD). Understanding changes in the microbial community, due to geochemical and seasonal characteristics, is fundamental to AMD monitoring and remediation. Using direct sequencing of the 16S and 18S rRNA genes to identify bacterial, archaeal, and eukaryotic members of the microbial community at an AMD site in Northern Ontario, Canada, we found a dynamic community varying significantly across winter and summer sampling times. Community composition was correlated with physical and chemical properties, including water temperature, pH, conductivity, winter ice thickness, and metal concentrations. Within Bacteria, Acidithiobacillus was the dominant genus during winter (11%-57% of sequences) but Acidiphilium was dominant during summer (47%-87%). Within Eukarya, Chrysophyceae (1.5%-94%) and Microbotrymycetes (8%-92%) dominated the winter community, and LKM11 (4%-62%) and Chrysophyceae (25%-87%) the summer. There was less diversity and variability within the Archaea, with similar summer and winter communities mainly comprising Thermoplasmata (33%-64%) and Thermoprotei (5%-20%) classes but also including a large portion of unclassified reads (∼40%). Overall, the active AMD community varied significantly between winter and summer, with changing community profiles closely correlated to specific differences in AMD geochemical and physical properties, including pH, water temperature, ice thickness, and sulfate and metal concentrations.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Mineração , Eucariotos/isolamento & purificação , Concentração de Íons de Hidrogênio , Estações do Ano
9.
Biol Lett ; 12(1): 20150875, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26740566

RESUMO

Bacterial diversity within animals is emerging as an essential component of health, but it is unknown how stress may influence the microbiome. We quantify a proximate link between the oral microbiome and hypothalamic-pituitary-adrenal (HPA) axis activity using faecal glucocorticoid metabolites (FGM) in wild red squirrels (Tamiasciurus hudsonicus). Not only was bacterial diversity lower at higher levels of FGM, but also between capture periods a change in bacterial relative abundance was related to an increase in FGM. These linkages between the HPA axis and microbiome communities represent a powerful capacity for stress to have multi-dimensional effects on health.


Assuntos
Glucocorticoides/análise , Microbiota , Sciuridae/microbiologia , Sciuridae/fisiologia , Estresse Fisiológico , Animais , Fezes/química , Feminino , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Boca/microbiologia , Sistema Hipófise-Suprarrenal/fisiologia
10.
Appl Environ Microbiol ; 79(12): 3637-48, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23563939

RESUMO

The Lost Hammer (LH) Spring is the coldest and saltiest terrestrial spring discovered to date and is characterized by perennial discharges at subzero temperatures (-5°C), hypersalinity (salinity, 24%), and reducing (≈-165 mV), microoxic, and oligotrophic conditions. It is rich in sulfates (10.0%, wt/wt), dissolved H2S/sulfides (up to 25 ppm), ammonia (≈381 µM), and methane (11.1 g day(-1)). To determine its total functional and genetic potential and to identify its active microbial components, we performed metagenomic analyses of the LH Spring outlet microbial community and pyrosequencing analyses of the cDNA of its 16S rRNA genes. Reads related to Cyanobacteria (19.7%), Bacteroidetes (13.3%), and Proteobacteria (6.6%) represented the dominant phyla identified among the classified sequences. Reconstruction of the enzyme pathways responsible for bacterial nitrification/denitrification/ammonification and sulfate reduction appeared nearly complete in the metagenomic data set. In the cDNA profile of the LH Spring active community, ammonia oxidizers (Thaumarchaeota), denitrifiers (Pseudomonas spp.), sulfate reducers (Desulfobulbus spp.), and other sulfur oxidizers (Thermoprotei) were present, highlighting their involvement in nitrogen and sulfur cycling. Stress response genes for adapting to cold, osmotic stress, and oxidative stress were also abundant in the metagenome. Comparison of the composition of the functional community of the LH Spring to metagenomes from other saline/subzero environments revealed a close association between the LH Spring and another Canadian high-Arctic permafrost environment, particularly in genes related to sulfur metabolism and dormancy. Overall, this study provides insights into the metabolic potential and the active microbial populations that exist in this hypersaline cryoenvironment and contributes to our understanding of microbial ecology in extreme environments.


Assuntos
Temperatura Baixa , Sedimentos Geológicos/microbiologia , Metagenoma/genética , Nascentes Naturais/microbiologia , Salinidade , Archaea/genética , Regiões Árticas , Bacteroidetes/genética , Sequência de Bases , Cianobactérias/genética , Primers do DNA/genética , DNA Complementar/genética , Dados de Sequência Molecular , Proteobactérias/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Front Microbiol ; 14: 1149903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007468

RESUMO

Low temperature and acidic environments encompass natural milieus such as acid rock drainage in Antarctica and anthropogenic sites including drained sulfidic sediments in Scandinavia. The microorganisms inhabiting these environments include polyextremophiles that are both extreme acidophiles (defined as having an optimum growth pH < 3), and eurypsychrophiles that grow at low temperatures down to approximately 4°C but have an optimum temperature for growth above 15°C. Eurypsychrophilic acidophiles have important roles in natural biogeochemical cycling on earth and potentially on other planetary bodies and moons along with biotechnological applications in, for instance, low-temperature metal dissolution from metal sulfides. Five low-temperature acidophiles are characterized, namely, Acidithiobacillus ferriphilus, Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, "Ferrovum myxofaciens," and Alicyclobacillus disulfidooxidans, and their characteristics are reviewed. Our understanding of characterized and environmental eurypsychrophilic acidophiles has been accelerated by the application of "omics" techniques that have aided in revealing adaptations to low pH and temperature that can be synergistic, while other adaptations are potentially antagonistic. The lack of known acidophiles that exclusively grow below 15°C may be due to the antagonistic nature of adaptations in this polyextremophile. In conclusion, this review summarizes the knowledge of eurypsychrophilic acidophiles and places the information in evolutionary, environmental, biotechnological, and exobiology perspectives.

12.
Eng Life Sci ; 23(7): 2200133, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37408871

RESUMO

Mine wastewater often contains dissolved metals at concentrations too low to be economically extracted by existing technologies, yet too high for environmental discharge. The most common treatment is chemical precipitation of the dissolved metals using limestone and subsequent disposal of the sludge in tailing impoundments. While it is a cost-effective solution to meet regulatory standards, it represents a lost opportunity. In this study, we engineered Escherichia coli to overexpress its native NikABCDE transporter and a heterologous metallothionein to capture nickel at concentrations in local effluent streams. We found the engineered strain had a 7-fold improvement in the bioaccumulation performance for nickel compared to controls, but also observed a drastic decrease in cell viability due to metabolic burden or inducer (IPTG) toxicity. Growth kinetic analysis revealed the IPTG concentrations used based on past studies lead to growth inhibition, thus delineating future avenues for optimization of the engineered strain and its growth conditions to perform in more complex environments.

13.
Sci Total Environ ; 876: 162839, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36921856

RESUMO

Mine tailings are prevalent worldwide and can adversely impact adjacent ecosystems, including wetlands. This study investigated the impact of gold (Au) mine tailings contamination on peatland soil and pore water geochemistry, vegetation and microbial communities, and microbial carbon (C) cycling. Maximum arsenic (As) concentrations in peat and pore water reached 20,137 mg kg-1 and 16,730 µg L-1, respectively, but decreased by two orders of magnitude along a 128 m gradient extending from the tailings into the wetland. Carbon and other macronutrient (N, P, K) concentrations in peat and pore water significantly increased with distance from contamination. Relative percent cover and species richness of vascular and non-vascular plants significantly increased with distance into the wetland, with higher non-vascular richness being found at intermediate distances before transitioning to a vascular plant dominated community. Bacterial and archaeal community composition exhibited a decreased proportion of members of the phylum Acidobacteria (notably of the order Acidobacteriales) and increased diversity and richness of methanogens across a larger range of orders farther from the tailings source, an indication of microbial C-cycling potential. Consistent with changes in microbial communities, in vitro microbial CH4 production potential significantly increased with distance from the contaminant source. This study demonstrates both the profound negative impact that metalliferous tailings contamination can have on above and belowground communities in peatlands, and the value of wetland preservation and restoration.


Assuntos
Arsênio , Microbiota , Áreas Alagadas , Solo/química , Água , Carbono
14.
Int J Syst Evol Microbiol ; 62(Pt 8): 1937-1944, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22003043

RESUMO

A novel aerobic, Gram-positive, motile, coccoid bacterial strain, designated Or1(T), was isolated from permafrost active-layer soil collected from the Canadian high Arctic. Strain Or1(T) was capable of growth over a broad temperature range, including sub-zero growth (below -10 to 37 °C), and at high salinity (0-19% NaCl), growing optimally at 25 °C, at pH 7.0-8.0 and in the presence of 2% NaCl. Its taxonomic and phylogenetic position was determined by using a polyphasic approach, which indicated that strain Or1(T) was a member of the genus Planococcus. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Or1(T) belonged to the genus Planococcus, differing by 0.4-3.6% from the type strains of all recognized Planococcus species, and was related most closely to Planococcus antarcticus CMS 26or(T) (98.8% similarity) and Planococcus donghaensis JH1(T) (99.6%). However, DNA-DNA hybridization experiments showed that strain Or1(T) had low genomic relatedness to Planococcus antarcticus CMS 26or(T) (18%) and Planococcus donghaensis JH1(T) (46%). The major menaquinones of strain Or1(T) were MK-7 (55%), MK-8 (36%) and MK-6 (9%) and the major fatty acids were anteiso-C(15:0), C(16:1)ω7c alcohol and anteiso-C(17:0). The DNA G+C content of strain Or1(T) was 40.5 mol%. Differential phenotypic, phylogenetic and genomic data suggest that strain Or1(T) represents a novel species of the genus Planococcus, for which the name Planococcus halocryophilus sp. nov. is proposed. The type strain is Or1(T) ( = DSM 24743(T) = JCM 17719(T)).


Assuntos
Bactérias Gram-Positivas/classificação , Filogenia , Microbiologia do Solo , Regiões Árticas , Técnicas de Tipagem Bacteriana , Composição de Bases , Canadá , DNA Bacteriano/genética , Ácidos Graxos/análise , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/isolamento & purificação , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/análise , Vitamina K 2/análise
15.
Extremophiles ; 16(2): 177-91, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22246205

RESUMO

Lost Hammer (LH) spring is a unique hypersaline, subzero, perennial high Arctic spring arising through thick permafrost. In the present study, the microbial and geochemical characteristics of the LH outflow channels, which remain unfrozen at ≥-18°C and are more aerobic/less reducing than the spring source were examined and compared to the previously characterized spring source environment. LH channel sediments contained greater microbial biomass (~100-fold) and greater microbial diversity reflected by the 16S rRNA clone libraries. Phylotypes related to methanogenesis, methanotrophy, sulfur reduction and oxidation were detected in the bacterial clone libraries while the archaeal community was dominated by phylotypes most closely related to THE ammonia-oxidizing Thaumarchaeota. The cumulative percent recovery of (14)C-acetate mineralization in channel sediment microcosms exceeded ~30% and ~10% at 5 and -5°C, respectively, but sharply decreased at -10°C (≤1%). Most bacterial isolates (Marinobacter, Planococcus, and Nesterenkonia spp.) were psychrotrophic, halotolerant, and capable of growth at -5°C. Overall, the hypersaline, subzero LH spring channel has higher microbial diversity and activity than the source, and supports a variety of niches reflecting the more dynamic and heterogeneous channel environment.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Água do Mar/química , Regiões Árticas , Biodiversidade , Dióxido de Carbono/química , Química/métodos , Temperatura Baixa , DNA Arqueal/metabolismo , DNA Bacteriano/metabolismo , Congelamento , Geologia/métodos , Metano/química , Filogenia , RNA Ribossômico 16S/metabolismo
16.
PLoS One ; 17(11): e0275149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36417456

RESUMO

Peatlands account for 15 to 30% of the world's soil carbon (C) stock and are important controls over global nitrogen (N) cycles. However, C and N concentrations are known to vary among peatlands contributing to the uncertainty of global C inventories, but there are few global studies that relate peatland classification to peat chemistry. We analyzed 436 peat cores sampled in 24 countries across six continents and measured C, N, and organic matter (OM) content at three depths down to 70 cm. Sites were distinguished between northern (387) and tropical (49) peatlands and assigned to one of six distinct broadly recognized peatland categories that vary primarily along a pH gradient. Peat C and N concentrations, OM content, and C:N ratios differed significantly among peatland categories, but few differences in chemistry with depth were found within each category. Across all peatlands C and N concentrations in the 10-20 cm layer, were 440 ± 85.1 g kg-1 and 13.9 ± 7.4 g kg-1, with an average C:N ratio of 30.1 ± 20.8. Among peatland categories, median C concentrations were highest in bogs, poor fens and tropical swamps (446-532 g kg-1) and lowest in intermediate and extremely rich fens (375-414 g kg-1). The C:OM ratio in peat was similar across most peatland categories, except in deeper samples from ombrotrophic tropical peat swamps that were higher than other peatlands categories. Peat N concentrations and C:N ratios varied approximately two-fold among peatland categories and N concentrations tended to be higher (and C:N lower) in intermediate fens compared with other peatland types. This study reports on a unique data set and demonstrates that differences in peat C and OM concentrations among broadly classified peatland categories are predictable, which can aid future studies that use land cover assessments to refine global peatland C and N stocks.


Assuntos
Carbono , Solo , Carbono/química , Solo/química , Áreas Alagadas , Nitrogênio
17.
Antonie Van Leeuwenhoek ; 100(2): 259-77, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21604047

RESUMO

Cold tolerant strains of Acidithiobacillus ferrooxidans play a role in metal leaching and acid mine drainage (AMD) production in northern latitude/boreal mining environments. In this study we used a proteomics and bioinformatics approach to decipher the proteome changes related to sustained growth at low temperatures to increase our understanding of cold adaptation mechanisms in A. ferrooxidans strains. Changes in protein abundance in response to low temperatures (5 and 15°C) were monitored and protein analyses of a psychrotrophic strain (D6) versus a mesophilic strain (F1) showed that both strains increased levels of 11 stress-related and metabolic proteins including survival protein SurA, trigger factor Tig, and AhpC-Tsa antioxidant proteins. However, a unique set of changes in the proteome of psychrotrophic strain D6 were observed. In particular, the importance of protein fate, membrane transport and structure for psychrotrophic growth were evident with increases in numerous chaperone and transport proteins including GroEL, SecB, ABC transporters and a capsule polysaccharide export protein. We also observed that low temperature iron oxidation coincides with a relative increase in the key iron metabolism protein rusticyanin, which was more highly expressed in strain D6 than in strain F1 at colder growth temperatures. We demonstrate that the psychrotrophic strain uses a global stress response and cold-active metabolism which permit growth of A. ferrooxidans in the extreme AMD environment in colder climates.


Assuntos
Acidithiobacillus/fisiologia , Adaptação Fisiológica , Proteínas de Bactérias/metabolismo , Temperatura Baixa , Proteoma/metabolismo , Acidithiobacillus/genética , Acidithiobacillus/crescimento & desenvolvimento , Azurina/metabolismo , Carbono/metabolismo , Biologia Computacional , Eletroforese em Gel Bidimensional , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Chaperonas Moleculares/metabolismo , Oxirredução , Estresse Oxidativo , Filogenia , Dobramento de Proteína , Isoformas de Proteínas/metabolismo
18.
Front Microbiol ; 12: 660190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603222

RESUMO

Mine tailings host dynamic biogeochemical processes that can mobilize a range of elements from the host material and release them into the environment through acidic, neutral, or alkaline mine drainage. Here we use a combination of mineralogical, geochemical, and microbiological techniques that provide a better understanding of biogeochemical processes within the surficial layers of neutral cobalt and arsenic-rich tailings material at Cobalt, ON, Canada. Tailings material within 30-cm depth profiles from three tailings sites (sites A, B, and C) were characterized for their mineralogical, chemical and microbial community compositions. The tailings material at all sites contains (sulf)arsenides (safflorite, arsenopyrite), and arsenates (erythrite and annabergite). Site A contained a higher and lower amount of (sulf)arsenides and arsenates than site B, respectively. Contrary to site A and B, site C depicted a distinct zoning with (sulf)arsenides found in the deeper reduced zone, and arsenates occurring in the shallow oxidized zone. Variations in the abundance of Co+As+Sb+Zn (Co#), Fe (Fe#), total S (S#), and average valence of As indicated differences in the mineralogical composition of the tailings material. For example, material with a high Co#, lo Fe# and high average valence of As commonly have a higher proportion of secondary arsenate to primary (sulf)arsenide minerals. Microbial community profiling indicated that the Cobalt tailings are primarily composed of Actinobacteria and Proteobacteria, and known N, S, Fe, methane, and possible As-cycling bacteria. The tailings from sites B and C had a larger abundance of Fe and S-cycling bacteria (e.g., Sulfurifustis and Thiobacillus), which are more abundant at greater depths, whereas the tailings of site A had a higher proportion of potential As-cycling and -resistant genera (e.g., Methylocystis and Sphingomonas). A multi-variate statistical analysis showed that (1) distinct site-specific groupings occur for the Co # vs. Fe #, Co# vs. S#'s and for the microbial community structure and (2) microbial communities are statistically highly correlated to depth, S#, Fe#, pH and the average valence of As. The variation in As valence correlated well with the abundance of N, S, Fe, and methane-cycling bacteria. The results of this study provide insights into the complex interplay between minerals containing the critical element cobalt, arsenic, and microbial community structure in the Cobalt Mining Camp tailings.

19.
Sci Total Environ ; 760: 143393, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33213923

RESUMO

Application of stable soil amendments is often the key to successful phytostabilization and rehabilitation of mine tailings, and microbial guilds are primary drivers of many geochemical processes promoted by these amendments. Field studies were set up at a tailings management area near Sudbury, Ontario to examine performance of blends of lime stabilized municipal biosolids and compost at nine different rates over thick (1 m) municipal compost covers planted with agricultural crops. Based on biogeochemical variability of the substrates four and ten years after application of the initial compost cover, the experimental plots could be classified into three categories: "Low" rate (0-100 t ha-1 biosolids), "Medium" rate (200-800 t ha-1), and "High" rate (1600-3200 t ha-1) treatments. The addition of biosolids materials to the thick compost cover at rates higher than 100 t ha-1 significantly reduced C:N ratio of the substrates, available phosphorus, and some of the nutrient cations, while notably increasing inorganic carbon and the potential solubility of Ni and Cu. This suggests that increasing biosolids application rates may not equivalently ameliorate soil quality and geochemical stability. Correspondingly, microbial communities were altered by biosolids additions, further intensifying the negative impacts of biosolids on long-term efficiency of the initial compost cover. Abundance of cellulose, hemicellulose, and lignocellulose decomposers (as key drivers of mineralization and humification) was significantly reduced by "Medium" and "High" rate treatments. Most DNA sequences with high affinity to denitrifiers were detected in "High" rate treatments where geochemical conditions were optimal for higher microbial denitrification activities. These findings have implications for improving the long-term efficiency of reclamation and environmental management programs in mine tailings of northern temperate climates.


Assuntos
Compostagem , Microbiota , Poluentes do Solo , Biossólidos , Ontário , Solo , Poluentes do Solo/análise
20.
FEMS Microbiol Lett ; 368(21-24)2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34875049

RESUMO

Peatlands both accumulate carbon and release methane, but their broad range in environmental conditions means that the diversity of microorganisms responsible for carbon cycling is still uncertain. Here, we describe a community analysis of methanogenic archaea responsible for methane production in 17 peatlands from 36 to 53 N latitude across the eastern half of North America, including three metal-contaminated sites. Methanogenic community structure was analysed through Illumina amplicon sequencing of the mcrA gene. Whether metal-contaminated sites were included or not, metal concentrations in peat were a primary driver of methanogenic community composition, particularly nickel, a trace element required in the F430 cofactor in methyl-coenzyme M reductase that is also toxic at high concentrations. Copper was also a strong predictor, likely due to inhibition at toxic levels and/or to cooccurrence with nickel, since copper enzymes are not known to be present in anaerobic archaea. The methanogenic groups Methanocellales and Methanosarcinales were prevalent in peatlands with low nickel concentrations, while Methanomicrobiales and Methanomassiliicoccales were abundant in peatlands with higher nickel concentrations. Results suggest that peat-associated trace metals are predictors of methanogenic communities in peatlands.


Assuntos
Archaea , Cobre , Microbiota , Níquel , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Carbono , Cobre/toxicidade , Ecossistema , Metano/metabolismo , Microbiota/efeitos dos fármacos , Níquel/toxicidade , América do Norte , Filogenia , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA