Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Drug Metab Dispos ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866474

RESUMO

The role of the kidney as an excretory organ for exogenous and endogenous compounds is well recognized, but there is a wealth of data demonstrating that the kidney has significant metabolizing capacity for a variety of exogenous and endogenous compounds that in some cases surpass the liver. The induction of drug-metabolizing enzymes by some chemicals can cause drug-drug interactions and intraindividual variability in drug clearance. In this study, we evaluated the expression and induction of cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT) isoforms in 3D-cultured primary human renal proximal tubule epithelial cells (RPTEC) to elucidate their utility as models of renal drug metabolism. CYP2B6, CYP2E1, CYP3A4, CYP3A5, and all detected UGTs (UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7) mRNA levels in 3D-RPTEC were significantly higher than those in 2D-RPTEC and HK-2 cells and were close to the levels in the human kidney cortex. CYP1B1 and CYP2J2 mRNA levels in 3D-RPTEC were comparable to those in 2D-RPTEC, HK-2 cells, and the human kidney cortex. Midazolam 1'-hydroxylation, trifluoperazine N-glucuronidation, serotonin O-glucuronidation, propofol O-glucuronidation, and morphine 3-glucuronidation in the 3D-RPTEC were significantly higher than the 2D-RPTEC and comparable to those in the HepaRG cells, although bupropion, ebastine, and calcitriol hydroxylations were not different between the 2D- and 3D-RPTEC. Treatment with ligands of the aryl hydrocarbon receptor and farnesoid X receptor induced CYP1A1 and UGT2B4 expression, respectively, in 3D-RPTEC compared to 2D-RPTEC. We provided information on the expression, activity, and induction abilities of P450s and UGTs in 3D-RPTEC as an in vitro human renal metabolism model. Significance Statement This study demonstrated that the expression of P450s and UGTs in 3D-RPTEC was higher than those in 2D-RPTEC and HK-2 cells. The results were comparable to that in the human kidney cortex. 3D-RPTEC are useful for evaluating the induction of kidney P450s, UGTs, and human renal drug metabolism in cellulo.

2.
Drug Metab Dispos ; 51(8): 1016-1023, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37137721

RESUMO

Drug-drug interactions (DDI) have a significant impact on drug efficacy and safety. It has been reported that orlistat, an anti-obesity drug, inhibits the hydrolysis of p-nitrophenol acetate, a common substrate of the major drug-metabolizing hydrolases, carboxylesterase (CES) 1, CES2, and arylacetamide deacetylase (AADAC), in vitro. The aim of this study was to examine whether orlistat affects the pharmacokinetics of drug(s) metabolized by hydrolases in vivo after evaluating its inhibitory potencies against CES1, CES2, and AADAC in vitro. Orlistat potently inhibited the hydrolysis of acebutolol, a specific substrate of CES2, in a non-competitive manner (inhibition constant, K i = 2.95 ± 0.16 nM), whereas it slightly inhibited the hydrolysis of temocapril and eslicarbazepine acetate, specific substrates of CES1 and AADAC, respectively (IC50 >100 nM). The in vivo DDI potential was elucidated using mice, in which orlistat showed strong inhibition against acebutolol hydrolase activities in the liver and intestinal microsomes, similar to humans. The area under the curve (AUC) of acebutolol was increased by 43%, whereas the AUC of acetolol, a hydrolyzed metabolite of acebutolol, was decreased by 47% by co-administration of orlistat. The ratio of the K i value to the maximum unbound plasma concentration of orlistat (<0.012) is lower than the risk criteria for DDI in the liver defined by the US Food and Drug Administration guideline (>0.02), whereas the ratio of the K i value to the estimated intestinal luminal concentration (3.3 × 105) is considerably higher than the risk criteria in the intestine (>10). Therefore, this suggests that orlistat causes DDI by inhibiting hydrolases in the intestine. SIGNIFICANCE STATEMENT: This study demonstrated that orlistat, an anti-obesity drug, causes drug-drug interactions in vivo by potently inhibiting carboxylesterase 2 in the intestine. This is the first evidence that inhibition of hydrolases causes drug-drug interactions.


Assuntos
Fármacos Antiobesidade , Hidrolases , Humanos , Camundongos , Animais , Hidrolases/metabolismo , Orlistate/farmacologia , Hidrolases de Éster Carboxílico/metabolismo , Fármacos Antiobesidade/farmacologia , Acebutolol , Carboxilesterase/metabolismo , Preparações Farmacêuticas/metabolismo , Hidrólise , Interações Medicamentosas
3.
Drug Metab Dispos ; 51(9): 1188-1195, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37344179

RESUMO

Aldo-keto reductase 1C3 (AKR1C3) plays a role in the detoxification and activation of clinical drugs by catalyzing reduction reactions. There are approximately 400 single-nucleotide polymorphisms (SNPs) in the AKR1C3 gene, but their impact on the enzyme activity is still unclear. This study aimed to clarify the effects of SNPs of AKR1C3 with more than 0.5% global minor allele frequency on the reductase activities for its typical substrates. Recombinant AKR1C3 wild-type and R66Q, E77G, C145Y, P180S, or R258C variants were constructed using insect Sf21 cells, and reductase activities for acetohexamide, doxorubicin, and loxoprofen by recombinant AKR1C3s were measured by liquid chromatography-tandem mass spectrometry. Among the variants tested, the C145Y variant showed remarkably low (6%-14% of wild type) intrinsic clearances of reductase activities for all three drugs. Reductase activities of these three drugs were measured using 34 individual Japanese liver cytosols, revealing that heterozygotes of the SNP g.55101G>A tended to show lower reductase activities for three drugs than homozygotes of the wild type. Furthermore, genotyping of the SNP g.55101G>A causing C145Y in 96 Caucasians, 166 African Americans, 192 Koreans, and 183 Japanese individuals was performed by polymerase chain reaction-restriction fragment length polymorphism. This allelic variant was specifically detected in Asians, with allele frequencies of 6.8% and 3.6% in Koreans and Japanese, respectively. To conclude, an AKR1C3 allele with the SNP g.55101G>A causing C145Y would be one of the causal factors for interindividual variabilities in the efficacy and toxicity of drugs reduced by AKR1C3. SIGNIFICANCE STATEMENT: This is the first study to clarify that the AKR1C3 allele with the SNP g.55101G>A causing C145Y results in a decrease in reductase activity. Since the allele was specifically observed in Asians, the allele would be a factor causing an interindividual variability in sensitivity of drug efficacy or toxicity of drugs reduced by AKR1C3 in Asians.


Assuntos
Doxorrubicina , Humanos , Alelos , Frequência do Gene/genética , Membro C3 da Família 1 de alfa-Ceto Redutase/genética
4.
Drug Metab Dispos ; 51(10): 1230-1237, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37349114

RESUMO

Human pregnane X receptor (PXR) is a major nuclear receptor that upregulates the expression of drug-metabolizing enzymes such as CYP3A4. In our recent study, it was revealed that PXR interacts with DAZ-associated protein 1 (DAZAP1), which is an essential component of the paraspeckle, a membraneless nuclear body, and the interaction was disassociated by rifampicin, a ligand of PXR. The purpose of this study was to clarify the roles of paraspeckles in PXR-mediated transcriptional regulation. Immunoprecipitation assays using PXR-overexpressing HepG2 (ShP51) cells revealed that PXR interacts with not only DAZAP1 but also NEAT1_2, a long noncoding RNA included in the paraspeckle, and that the interaction between PXR and NEAT1_2 was disassociated by rifampicin. These results suggest that PXR is trapped in paraspeckles and that the activation of PXR by its ligands facilitates its disassociation from paraspeckles. Induction of CYP3A4 by rifampicin was significantly enhanced by the knockdown of NEAT1_2 or DAZAP1 in ShP51 cells and their parental HepG2 cells. A luciferase assay using a plasmid containing the PXR response elements of CYP3A4 revealed that the increased CYP3A4 induction by siNEAT1_2 or siDAZAP1 was due to the increased transactivation by PXR. These results suggest that paraspeckles play a role in trapping nuclear PXR in the absence of the ligand to negatively regulate transactivation of its downstream gene. Collectively, this is the first study to demonstrate that the paraspeckle components NEAT1_2 and DAZAP1 negatively regulate CYP3A4 induction by PXR. SIGNIFICANCE STATEMENT: This study revealed that PXR interacts with paraspeckle components NEAT1_2 and DAZAP1 to suppress CYP3A4 induction by PXR, and the interaction is dissociated by PXR ligands. This finding provides a novel concept that paraspeckles formed by liquid-liquid phase separation potentially affect drug metabolism via negative regulation of PXR function.


Assuntos
Citocromo P-450 CYP3A , Receptores de Esteroides , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Ligantes , Paraspeckles , Receptor de Pregnano X/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Rifampina/farmacologia , Proteínas de Ligação a RNA
5.
Drug Metab Dispos ; 51(1): 17-28, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36310032

RESUMO

Enzymes of the aldo-keto reductase (AKR) and short-chain dehydrogenase/reductase superfamilies are involved in the reduction of compounds containing a ketone group. In most cases, multiple isoforms appear to be involved in the reduction of a compound, and the enzyme(s) that are responsible for the reaction in the human liver have not been elucidated. The purpose of this study was to quantitatively evaluate the contribution of each isoform to reduction reactions in the human liver. Recombinant cytosolic isoforms were constructed, i.e., AKR1C1, AKR1C2, AKR1C3, AKR1C4, and carbonyl reductase 1 (CBR1), and a microsomal isoform, 11ß-hydroxysteroid dehydrogenase type 1 (HSD11B1), and their contributions to the reduction of 10 compounds were examined by extrapolating the relative expression of each reductase protein in human liver preparations to recombinant systems quantified by liquid chromatography-mass spectrometry. The reductase activities for acetohexamide, doxorubicin, haloperidol, loxoprofen, naloxone, oxcarbazepine, and pentoxifylline were predominantly catalyzed by cytosolic isoforms, and the sum of the contributions of individual cytosolic reductases was almost 100%. Interestingly, AKR1C3 showed the highest contribution to acetohexamide and loxoprofen reduction, although previous studies have revealed that CBR1 mainly metabolizes them. The reductase activities of bupropion, ketoprofen, and tolperisone were catalyzed by microsomal isoform(s), and the contributions of HSD11B1 were calculated to be 41%, 32%, and 104%, respectively. To our knowledge, this is the first study to quantitatively evaluate the contribution of each reductase to the reduction of drugs in the human liver. SIGNIFICANCE STATEMENT: To our knowledge, this is the first study to determine the contribution of aldo-keto reductase (AKR)-1C1, AKR1C2, AKR1C3, AKR1C4, carbonyl reductase 1, and 11ß-hydroxysteroid dehydrogenase type 1 to drug reductions in the human liver by utilizing the relative expression factor approach. This study found that AKR1C3 contributes to the reduction of compounds at higher-than-expected rates.


Assuntos
Cetonas , Redutases-Desidrogenases de Cadeia Curta , Humanos , Aldo-Ceto Redutases/metabolismo , Carbonil Redutase (NADPH) , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Acetoexamida , Fígado/metabolismo , Oxirredutases/metabolismo , Isoformas de Proteínas
6.
Drug Metab Dispos ; 51(6): 733-742, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36927840

RESUMO

Nintedanib, which is used to treat idiopathic pulmonary fibrosis and non-small cell lung cancer, is metabolized to a pharmacologically inactive carboxylate derivative, BIBF1202, via hydrolysis and subsequently by glucuronidation to BIBF1202 acyl-glucuronide (BIBF1202-G). Since BIBF1202-G contains an ester bond, it can be hydrolytically cleaved to BIBF1202. In this study, we sought to characterize these metabolic reactions in the human liver and intestine. Nintedanib hydrolysis was detected in human liver microsomes (HLMs) (Clearance [CL int]: 102.8 ± 18.9 µL/min per mg protein) but not in small intestinal preparations. CES1 was suggested to be responsible for nintedanib hydrolysis according to experiments using recombinant hydrolases and hydrolase inhibitors as well as proteomic correlation analysis using 25 individual HLM. BIBF1202 glucuronidation in HLM (3.6 ± 0.3 µL/min per mg protein) was higher than that in human intestinal microsomes (1.5 ± 0.06 µL/min per mg protein). UGT1A1 and gastrointestinal UGT1A7, UGT1A8, and UGT1A10 were able to mediate BIBF1202 glucuronidation. The impact of UGT1A1 on glucuronidation was supported by the finding that liver microsomes from subjects homozygous for the UGT1A1*28 allele showed significantly lower activity than those from subjects carrying the wild-type UGT1A1 allele. Interestingly, BIBF1202-G was converted to BIBF1202 in HLS9 at 70-fold higher rates than the rates of BIBF1202 glucuronidation. An inhibition study and proteomic correlation analysis suggested that ß-glucuronidase is responsible for hepatic BIBF1202-G deglucuronidation. In conclusion, the major metabolic reactions of nintedanib in the human liver and intestine were quantitatively and thoroughly elucidated. This information could be helpful to understand the inter- and intraindividual variability in the efficacy of nintedanib. SIGNIFICANCE STATEMENT: To our knowledge, this is the first study to characterize the enzymes responsible for each step of nintedanib metabolism in the human body. This study found that ß-glucuronidase may contribute to BIBF1202-G deglucuronidation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteômica , Glucuronosiltransferase/metabolismo , Microssomos Hepáticos/metabolismo , Glucuronídeos/metabolismo , Hidrolases/metabolismo , Glucuronidase/metabolismo , Cinética
7.
Arch Biochem Biophys ; 736: 109536, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724833

RESUMO

Nabumetone, a nonsteroidal anti-inflammatory prodrug, is converted to a pharmacologically active metabolite, 6-methoxy-2-naphthylacetic acid (6-MNA); however, it is 11-fold more efficiently converted to 4-(6-methoxy-2-naphthyl)butan-2-ol (MNBO) via a reduction reaction in human hepatocytes. The goal of this study was to identify the enzyme(s) responsible for MNBO formation from nabumetone in the human liver. MNBO formation by human liver microsomes (HLM) was 5.7-fold higher than in the liver cytosol. In a panel of 24 individual HLM samples with quantitative proteomics data, the 17ß-hydroxysteroid dehydrogenase 12 (HSD17B12) protein level had the high correlation coefficient (r = 0.80, P < 0.001) among 4457 proteins quantified in microsomal fractions during MNBO formation. Recombinant HSD17B12 expressed in HEK293T cells exhibited prominent nabumetone reductase activity, and the contribution of HSD17B12 to the activity in the HLM was calculated as almost 100%. MNBO formation in HepG2 and Huh7 cells was significantly decreased by the knockdown of HSD17B12. We also examined the role of HSD17B12 in drug metabolism and found that recombinant HSD17B12 catalyzed the reduction reactions of pentoxifylline and S-warfarin, suggesting that HSD17B12 prefers compounds containing a methyl ketone group on the alkyl chain. In conclusion, our study demonstrated that HSD17B12 is responsible for the formation of MNBO from nabumetone. Together with the evidence for pentoxifylline and S-warfarin reduction, this is the first study to report that HSD17B12, which is known to metabolize endogenous compounds, such as estrone and 3-ketoacyl-CoA, plays a role as a drug-metabolizing enzyme.


Assuntos
Pentoxifilina , Humanos , Anti-Inflamatórios não Esteroides , Células HEK293 , Microssomos Hepáticos/metabolismo , Nabumetona/metabolismo , Pentoxifilina/metabolismo , Varfarina/metabolismo , Biocatálise
8.
Pharm Res ; 40(4): 863-871, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36002612

RESUMO

PURPOSE: Small extracellular vesicles (sEV) containing proteins and RNAs play important roles as intercellular signal mediators. A critical issue is that there are multiple methods to prepare sEV fractions. The purpose of this study was to examine whether cancer cell-derived sEV fractions prepared by different isolation methods show similar responses for the induction of inflammatory cytokines in macrophages. METHODS: sEV fractions from the conditioned medium of MCF-7 cells were prepared by ultracentrifugation (UC), the MagCapture Exosome Isolation Kit PS (PS), or the ExoQuick-TC kit (EQ). The mRNA levels of inflammatory cytokines in differentiated THP-1 cells treated with the sEV fractions were evaluated. RESULTS: The yields of sEV fractions obtained from 1 mL conditioned medium by UC, PS, or EQ were 3.2×108 particles (0.27 µg protein), 12.8×108 particles (0.87 µg protein) and 23.5 ×108 particles (4.50 µg protein), respectively. The average particle sizes in the UC, PS, and EQ fractions were 184.8 ± 1.8 nm, 157.8 ± 1.3 nm and 165.8 ± 1.1 nm, respectively. CD9 and CD81, markers of sEV, were most highly detected in the PS fraction, followed by the EQ and UC fractions. These results suggest that PS gave sEV with relatively high purity, and many protein contaminants appear to be included in the EQ fraction. The mRNA levels of inflammatory cytokines in THP-1 macrophages were most prominently increased by treatment with the UC fraction, followed by the EQ and PS fractions, suggesting that contaminants rather than sEV may largely induce an inflammatory response. CONCLUSION: The isolation method affects the evaluation of sEV function.


Assuntos
Vesículas Extracelulares , Humanos , Meios de Cultivo Condicionados/metabolismo , Células MCF-7 , Vesículas Extracelulares/metabolismo , Citocinas/metabolismo , RNA Mensageiro/metabolismo , Inflamação/metabolismo
9.
Int Heart J ; 64(4): 535-542, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37460322

RESUMO

Rapid reperfusion by primary percutaneous coronary intervention (pPCI) is an established strategy for the treatment of patients with ST-segment elevation myocardial infarction (STEMI). Pre-hospital electrocardiogram (PH-ECG) transmission by the emergency medical services (EMS) facilitates timely reperfusion in these patients. However, evidence regarding the clinical benefits of PH-ECG in individual hospitals is limited.This retrospective, observational study investigated the clinical efficacy of PH-ECG in STEMI patients who underwent pPCI. Of a total of 382 consecutive STEMI patients, 237 were enrolled in the study and divided into 2 groups: a PH-ECG group (n = 77) and non-PH-ECG group (n = 160). Door-to-balloon time (D2BT) was significantly shorter in the PH-ECG group (66 [52-80] min), compared to the non-PH-ECG group (70 [57-88] minutes, P = 0.01). The 30-day all-cause mortality rate was 6% in the PH-ECG group, which was significantly lower than that in the non-PH-ECG group (16%) (P = 0.037, hazard ratio [HR]: 0.38, 95% CI: 0.15-0.98). This trend was particularly evident in severely ill patients when stratified by GRACE score.The use of PH-ECG improved the survival rate of STEMI patients undergoing pPCI due to the improved pre-arrival preparation based on the EMS information. Coordination between EMS and PCI-capable institutes is essential for the management of PH-ECG.


Assuntos
Serviços Médicos de Emergência , Infarto do Miocárdio , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia , Intervenção Coronária Percutânea/efeitos adversos , Infarto do Miocárdio/etiologia , Estudos Retrospectivos , Hospitais , Resultado do Tratamento , Eletrocardiografia
10.
Drug Metab Dispos ; 50(5): 624-633, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35152204

RESUMO

Interindividual differences in the expression and activity of drug metabolizing enzymes including cytochrome P450, UDP-glucuronosyltransferase, and esterases cause variable therapeutic efficacy or adverse events of drugs. As the major mechanisms causing the variability in the expression of drug metabolizing enzymes, transcriptional regulation by transcription factors, epigenetic regulation including DNA methylation, and posttranscriptional regulation by microRNA are well known. Recently, adenosine-to-inosine RNA editing and methylation of adenosine at the N 6 position on RNA have emerged as novel regulators of drug metabolism potency. In this review article, the current knowledge of these two prevalent types of posttranscriptional modification mediated modulation of drug metabolism involved genes is introduced. SIGNIFICANCE STATEMENT: Elucidation of the significance of adenosine-to-inosine RNA editing and N 6-methyladenosine in the regulation of drug metabolizing enzymes is expected to lead to a deeper understanding of interindividual variability in the therapeutic efficacy or adverse effects of medicines.


Assuntos
MicroRNAs , Edição de RNA , Adenosina/metabolismo , Epigênese Genética , Inosina/metabolismo , MicroRNAs/metabolismo
11.
Drug Metab Dispos ; 50(5): 725-733, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-35279645

RESUMO

Sulindac is a nonsteroidal anti-inflammatory prodrug that is converted to its pharmacologically active metabolite, sulindac sulfide, via a reduction reaction. It is widely accepted that the gut microbiota is responsible for sulindac activation; however, sulindac-induced gastrointestinal injury, which is caused by irritation of the gastrointestinal tract by its active metabolite, is uncommon. Therefore, it is surmised that sulindac is converted to its active metabolite in tissues after absorption. In this study, we sought to identify the enzyme(s) responsible for sulindac activation in tissues and to compare its/their contribution to the gut microbiota. Sulindac is enzymatically reduced in human intestinal, liver, and renal cytosols. Since sulindac is known to be reduced by methionine sulfoxide reductase (Msr) in Escherichia coli, we investigated whether the human ortholog MSRA catalyzes the sulindac reduction reaction. We found that recombinant human MSRA shows sulindac reductase activity with a similar Michaelis constant value as tissue cytosols. In addition, it was revealed that cytosolic factor(s) efficiently enhanced MSRA activity. By using the relative expression factor, the contribution of MSRA to the sulindac reductase activities in each tissue cytosol was calculated to be almost 100%. In mice, depletion of the gut microbiota by administration of antibiotics resulted in a 31% decrease in the area under the curve ratio of sulindac sulfide to sulindac, indicating that the contribution of tissue MsrA to sulindac activation is expected to be 69% in the body. In conclusion, we demonstrated that MSRA expressed in tissues is involved in sulindac activation, making a larger contribution than the gut microbiota. SIGNIFICANCE STATEMENT: Methionine sulfoxide reductase A is responsible for the activation of sulindac, a nonsteroidal anti-inflammatory prodrug, to sulindac sulfide, an active form, in human tissues. Methionine sulfoxide reductase A expressed in tissues activates sulindac with a higher contribution than gut microbiota in body.


Assuntos
Microbioma Gastrointestinal , Pró-Fármacos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Escherichia coli , Humanos , Metionina Sulfóxido Redutases/metabolismo , Camundongos , Sulindaco/farmacologia
12.
Drug Metab Dispos ; 49(4): 322-329, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33446525

RESUMO

Human arylacetamide deacetylase (AADAC) plays a role in the detoxification or activation of drugs and is sometimes involved in the incidence of toxicity by catalyzing hydrolysis reactions. AADAC prefers compounds with relatively small acyl groups, such as acetyl groups. Eslicarbazepine acetate, an antiepileptic drug, is a prodrug rapidly hydrolyzed to eslicarbazepine. We sought to clarify whether AADAC might be responsible for the hydrolysis of eslicarbazepine acetate. Eslicarbazepine acetate was efficiently hydrolyzed by human intestinal and liver microsomes and recombinant human AADAC. The hydrolase activities in human intestinal and liver microsomes were inhibited by epigallocatechin gallate, a specific inhibitor of AADAC, by 82% and 88% of the control, respectively. The hydrolase activities in liver microsomes from 25 human livers were significantly correlated (r = 0.87, P < 0.001) with AADAC protein levels, suggesting that the enzyme AADAC is responsible for the hydrolysis of eslicarbazepine acetate. The effects of genetic polymorphisms of AADAC on eslicarbazepine acetate hydrolysis were examined by using the constructed recombinant AADAC variants with T74A, V172I, R248S, V281I, N366K, or X400Q. AADAC variants with R248S or X400Q showed lower activity than wild type (5% or 21%, respectively), whereas those with V172I showed higher activity than wild type (174%). Similar tendencies were observed in the other four substrates of AADAC; that is, p-nitrophenyl acetate, ketoconazole, phenacetin, and rifampicin. Collectively, we found that eslicarbazepine acetate is specifically and efficiently hydrolyzed by human AADAC, and several AADAC polymorphic alleles would be a factor affecting the enzyme activity and drug response. SIGNIFICANCE STATEMENT: This is the first study to clarify that arylacetamide deacetylase (AADAC) is responsible for the activation of eslicarbazepine acetate, an antiepileptic prodrug, to eslicarbazepine, an active form, in the human liver and intestines. In addition, we found that several AADAC polymorphic alleles would be a factor affecting the enzyme activity and drug response.


Assuntos
Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Dibenzazepinas/metabolismo , Microssomos Hepáticos/metabolismo , Polimorfismo Genético/fisiologia , Adulto , Idoso , Células Cultivadas , Dibenzazepinas/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Feminino , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Hidrólise/efeitos dos fármacos , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Pessoa de Meia-Idade , Polimorfismo Genético/efeitos dos fármacos
13.
Drug Metab Dispos ; 49(9): 718-728, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34135089

RESUMO

For drug development, species differences in drug-metabolism reactions present obstacles for predicting pharmacokinetics in humans. We characterized the species differences in hydrolases among humans and mice, rats, dogs, and cynomolgus monkeys. In this study, to expand the series of such studies, we attempted to characterize marmoset hydrolases. We measured hydrolase activities for 24 compounds using marmoset liver and intestinal microsomes, as well as recombinant marmoset carboxylesterase (CES) 1, CES2, and arylacetamide deacetylase (AADAC). The contributions of CES1, CES2, and AADAC to hydrolysis in marmoset liver microsomes were estimated by correcting the activities by using the ratios of hydrolase protein levels in the liver microsomes and those in recombinant systems. For six out of eight human CES1 substrates, the activities in marmoset liver microsomes were lower than those in human liver microsomes. For two human CES2 substrates and three out of seven human AADAC substrates, the activities in marmoset liver microsomes were higher than those in human liver microsomes. Notably, among the three rifamycins, only rifabutin was hydrolyzed by marmoset tissue microsomes and recombinant AADAC. The activities for all substrates in marmoset intestinal microsomes tended to be lower than those in liver microsomes, which suggests that the first-pass effects of the CES and AADAC substrates are due to hepatic hydrolysis. In most cases, the sums of the values of the contributions of CES1, CES2, and AADAC were below 100%, which indicated the involvement of other hydrolases in marmosets. In conclusion, we clarified the substrate preferences of hydrolases in marmosets. SIGNIFICANCE STATEMENT: This study confirmed that there are large differences in hydrolase activities between humans and marmosets by characterizing marmoset hydrolase activities for compounds that are substrates of human CES1, CES2, or arylacetamide deacetylase. The data obtained in this study may be useful for considering whether marmosets are appropriate for examining the pharmacokinetics and efficacies of new chemical entities in preclinical studies.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Hidrolases , Intestino Delgado/enzimologia , Fígado/enzimologia , Microssomos/enzimologia , Rifamicinas/farmacocinética , Animais , Callithrix , Carboxilesterase/metabolismo , Desenvolvimento de Medicamentos/métodos , Ativação Enzimática/fisiologia , Ensaios Enzimáticos/métodos , Humanos , Hidrolases/classificação , Hidrolases/metabolismo , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Especificidade por Substrato
14.
Xenobiotica ; 51(12): 1352-1359, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34779706

RESUMO

Pirfenidone is a first-line drug for the treatment of idiopathic pulmonary fibrosis. The primary metabolic pathways of pirfenidone in humans are 5-hydroxylation and subsequent oxidation to 5-carboxylpirfenidone. The aims of this study were to determine the cytochrome P450 isoforms responsible for pirfenidone 5-hydroxylation and to evaluate their contributions in human liver microsomes (HLM).Among the recombinant P450 isoforms, CYP1A2, CYP2D6, CYP2C19, CYP2A6, and CYP2B6 were shown to catalyse the 5-hydroxylation of pirfenidone. Pirfenidone 5-hydroxylase activity by HLM was inhibited by α-naphthoflavone (by 45%), 8-methoxypsolaren (by 84%), tranylcypromine (by 53%), and quinidine (by 15%), which are CYP1A2, CYP1A2/CYP2A6/CYP2C19, CYP2A6/CYP2C19, and CYP2D6 inhibitors, respectively.In 17 individual HLM donors, pirfenidone 5-hydroxylase activity was significantly correlated with phenacetin O-deethylase (r = 0.89, P < 0.001) and S-mephenytoin 4'-hydroxylase activities (r = 0.51, P < 0.05), which are CYP1A2 and CYP2C19 marker activities, respectively.By using the relative activity factors, the contributions of CYP1A2, CYP2C19, and CYP2D6 to pirfenidone 5-hydroxylation in the human liver were 72.8%, 11.8%, and 8.9%, respectively.In conclusion, we clearly demonstrated the predominant P450 involved in pirfenidone 5-hydroxylation in the human liver is CYP1A2, with CYP2C19 and CYP2D6 playing a minor role.


Assuntos
Citocromos , Catálise , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromos/metabolismo , Humanos , Hidroxilação , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Piridonas
15.
Biosci Biotechnol Biochem ; 85(12): 2466-2475, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34596677

RESUMO

Water containing ultrafine/nano bubbles (UFBs) promoted the growth of tomato (Solanum lycopersicum) in soil damaged by cultivation of tomato in the previous year or bacterial wilt-like disease and also promoted the growth of lettuce (Lactuca sativa) when lettuce was grown in the soil damaged by repeated cultivation of lettuce. On the other hand, UFB supply did not affect plant growth in rock wool or healthy soil. Furthermore, the growth of lettuce was not affected by UFB water treatment in the soil damaged by the cultivation of tomato. UFB water partly suppressed the growth of the pathogen of bacteria wilt disease, Ralstonia solanacearum in vitro. These data suggest that UFB water is effective to recover the plant growth from soil damage.


Assuntos
Ralstonia solanacearum
16.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804001

RESUMO

Pyridine nucleotides such as a nicotinamide adenine dinucleotide (NAD) are known as plant defense activators. We previously reported that nicotinamide mononucleotide (NMN) enhanced disease resistance against fungal pathogen Fusarium graminearum in barley and Arabidopsis. In this study, we reveal that the pretreatment of nicotinamide (NIM), which does not contain nucleotides, effectively suppresses disease development of Fusarium Head Blight (FHB) in wheat plants. Correspondingly, deoxynivalenol (DON) mycotoxin accumulation was also significantly decreased by NIM pretreatment. A metabolome analysis showed that several antioxidant and antifungal compounds such as trigonelline were significantly accumulated in the NIM-pretreated spikes after inoculation of F. graminearum. In addition, some metabolites involved in the DNA hypomethylation were accumulated in the NIM-pretreated spikes. On the other hand, fungal metabolites DON and ergosterol peroxide were significantly reduced by the NIM pretreatment. Since NIM is relative stable and inexpensive compared with NMN and NAD, it may be more useful for the control of symptoms of FHB and DON accumulation in wheat and other crops.


Assuntos
Fusarium/efeitos dos fármacos , Niacinamida/farmacologia , Doenças das Plantas/prevenção & controle , Triticum/microbiologia , Fusarium/metabolismo , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Tricotecenos/metabolismo , Triticum/efeitos dos fármacos
17.
Heart Vessels ; 35(6): 762-768, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31925501

RESUMO

Statin therapy has been shown to induce carotid atherosclerotic plaque regression and reduce the periprocedural ischemic complications of carotid artery stenting (CAS). This study assessed the safety and usefulness of pretreatment using a high-dose strong statin (HDSS) to reduce the periprocedural ischemic complications of CAS. We analyzed 117 carotid lesions treated by CAS that were evaluated with magnetic resonance imaging (MRI) within 48 h after the procedure. For 67 lesions, an HDSS (rosuvastatin 20 mg or atorvastatin 40 mg daily) were prescribed from at least 14 days before CAS to at least 14 days after procedure (HDSS group). Clinical and angiographic data, as well as in-hospital outcomes, of the HDSS group were retrospectively compared with 50 lesions with conventional treatment without an HDSS (non-HDSS group). There were no significant differences in the baseline clinical and procedural characteristics between the two groups. There was no side effect related to the HDSS. Stroke rates were similar between the two groups (3.0% in HDSS group vs 8.0% in non-HDSS group, p = 0.22). All were minor strokes. Compared to the non-HDSS group, the HDSS group had a lower frequency of new lesions on diffusion-weighted imaging (DWI) with MRI (25.4% vs 44.0%, p = 0.0345). New ipsilateral DWI-positive rate in the HDSS group was significantly lower than in the non-HDSS group (16.4% vs 34.0%, p = 0.0275). Nonipsilateral (contralateral or posterior circulation) DWI-positive rates were similar between the two groups (13.4% vs 20.0%, p = 0.34). Pretreatment with an HDSS might reduce the periprocedural ischemic complications of CAS.


Assuntos
Atorvastatina/administração & dosagem , Isquemia Encefálica/prevenção & controle , Doenças das Artérias Carótidas/terapia , Procedimentos Endovasculares/efeitos adversos , Procedimentos Endovasculares/instrumentação , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Rosuvastatina Cálcica/administração & dosagem , Stents , Acidente Vascular Cerebral/prevenção & controle , Idoso , Atorvastatina/efeitos adversos , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/etiologia , Doenças das Artérias Carótidas/complicações , Doenças das Artérias Carótidas/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Esquema de Medicação , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Rosuvastatina Cálcica/efeitos adversos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/etiologia , Fatores de Tempo , Resultado do Tratamento
18.
Heart Vessels ; 35(8): 1060-1069, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32239276

RESUMO

Mechanical complications (MCs) following acute myocardial infarction (AMI), such as ventricular septal rupture (VSR), free-wall rupture (FWR), and papillary muscle rupture (PMR), are fatal. However, the risk factors of in-hospital mortality among patients with MCs have not been previously reported in Japan. The purpose of this study was to evaluate the prognostic factors of in-hospital mortality in these patients. The study cohort consisted of 233 consecutive patients with MCs from the registry of 10 facilities in the Cardiovascular Research Consortium-8 Universities (CIRC-8U) in East Japan between 1997 and 2014 (2.3% of 10,278 AMI patients). The authors conducted a retrospective observational study to analyse the correlation between the subtypes of MCs with in-hospital mortality, clinical data, and medical treatment. We observed a decreasing incidence of MC (1997-2004: 3.7%, 2005-2010: 2.1%, 2011-2014: 1.9%, p < 0.001). In-hospital mortality among patients with MCs was 46%. Thirty-three percent of patients with MCs were not able to undergo surgical repair due to advanced age or severe cardiogenic shock. In-hospital mortality among patients who had undergone surgical repair was 29% (VSR: 21%, FWR: 33%, PMR: 60%). In patients with MCs, hazard ratio for in-hospital mortality according to multivariate analysis of without surgical repair was 5.63 (95% CI 3.54-8.95). In patients with surgical repair, the hazard ratios of blow-out-type FWR (5.53, 95% confidence interval (CI) 2.22-13.76), those with renal dysfunction (3.11, 95% CI 1.37-7.05), and those receiving venoarterial extracorporeal membrane oxygenation (VA-ECMO) (3.79, 95% CI 1.81-7.96) were significantly high. Although primary percutaneous coronary intervention (PCI) is associated with decreased incidence of MCs, high in-hospital mortality persisted in patients with MCs that also presented with renal dysfunction and in those requiring VA-ECMO. Early detection and surgical repair of MCs are essential.


Assuntos
Ruptura Cardíaca Pós-Infarto/mortalidade , Mortalidade Hospitalar , Infarto do Miocárdio/mortalidade , Choque Cardiogênico/mortalidade , Idoso , Idoso de 80 Anos ou mais , Feminino , Ruptura Cardíaca Pós-Infarto/fisiopatologia , Ruptura Cardíaca Pós-Infarto/terapia , Hospitalização , Humanos , Incidência , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Sistema de Registros , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Choque Cardiogênico/fisiopatologia , Choque Cardiogênico/terapia , Fatores de Tempo , Resultado do Tratamento
19.
J Pharmacol Exp Ther ; 370(3): 408-415, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31270214

RESUMO

Adenosine deaminases acting on RNA (ADARs) enzymes-catalyzing adenosine-to-inosine RNA editing possibly modulates gene expression and function. In this study, we investigated whether ADARs regulate the expression of human constitutive androstane receptor (CAR), which controls the expression of various drug-metabolizing enzymes. CAR mRNA and protein levels in human hepatocellular carcinoma-derived HepG2 cells were increased by knockdown of ADAR1 and slightly increased by ADAR2, indicating that ADARs negatively regulate CAR expression. Increased luciferase activity of a reporter plasmid containing the CYP3A4 promoter region by phenobarbital was augmented by transfection of siRNA for ADAR1 (siADAR1) but not by siADAR2. In addition, the knockdown of ADAR1 resulted in the enhanced induction of CYP2B6 and CYP3A4 mRNA by 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime and phenobarbital, respectively. These results suggest that ADAR1-mediated downregulation of CAR affects its downstream cytochrome P450 expression. When the transcription was inhibited by α-amanitin, the degradation of CAR mRNA was attenuated by knockdown of ADAR1, suggesting that the increase in CAR mRNA level by ADAR1 knockdown is a post-transcriptional event. Finally, we found that ADAR1 knockdown promotes the splicing of CAR as a mechanism of the increased expression of CAR by ADAR1 knockdown. In conclusion, this study revealed that ADAR1 plays a role in modulating xenobiotic metabolism potency via regulation of CAR. SIGNIFICANCE STATEMENT: This study revealed that adenosine deaminase acting on RNA 1 (ADAR1) and ADAR2, which catalyze adenosine-to-inosine RNA editing, downregulate the expression of constitutive androstane receptor (CAR) in human liver-derived cells by attenuating splicing. The downregulation of CAR by ADARs affected its downstream cytochrome P450 expression. ADARs would play a role in modulating xenobiotic metabolism potency via regulation of CAR.


Assuntos
Adenosina Desaminase/metabolismo , Regulação para Baixo , Fígado/citologia , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Adenosina Desaminase/deficiência , Adenosina Desaminase/genética , Biocatálise , Receptor Constitutivo de Androstano , Citocromo P-450 CYP2B6/biossíntese , Citocromo P-450 CYP3A/biossíntese , Indução Enzimática , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Estabilidade de RNA , Proteínas de Ligação a RNA/genética
20.
Drug Metab Dispos ; 47(6): 639-647, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30988053

RESUMO

A-to-I RNA editing, the most frequent type of RNA editing in mammals, is catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes. Recently, we found that there is a large interindividual variation in the expression of ADAR1 protein in the human livers. In this study, we investigated the possibility that A-to-I RNA editing may modulate the expression of cytochrome P450 (P450), causing interindividual variations in drug metabolism potencies. We found that knockdown of ADAR1 or ADAR2 in HepaRG cells resulted in the decreased expression of CYP2B6 and CYP2C8 mRNA and protein. Knockdown of ADARs significantly decreased the stability of CYP2B6 mRNA but not CYP2C8 mRNA. Luciferase assays revealed that the 3'-untranslated region of CYP2B6 and the promoter region of CYP2C8 would be involved in the decrease in their expression by the knockdown of ADARs. We found that the decreased expression of the hepatocyte nuclear factor 4α (HNF4α) protein by the knockdown of ADARs was one of the reasons for the decreased transactivity of CYP2C8. The mRNA levels of other P450 isoforms, such as CYP2A6, 2C9, 2C19, 2D6, and 2E1, which are known to be regulated by HNF4α, were also decreased by ADAR1 or ADAR2 knockdown. Exceptionally, the CYP3A4 mRNA level was significantly increased by ADAR1 knockdown, suggesting the possibility that the change could be due to the change in the expression or function of other regulatory factors. In conclusion, this study revealed that the RNA editing enzymes ADAR1 and ADAR2 are novel regulatory factors of P450-mediated drug metabolism in the human liver.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA