Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Hum Mol Genet ; 29(11): 1772-1783, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-31108500

RESUMO

The RASopathies are a group of genetic syndromes caused by upregulated RAS signaling. Noonan syndrome (NS), the most common entity among the RASopathies, is characterized mainly by short stature, cardiac anomalies and distinctive facial features. Mutations in multiple RAS-MAPK pathway-related genes have been associated with NS and related phenotypes. We describe two unrelated patients presenting with hypertrophic cardiomyopathy (HCM) and dysmorphic features suggestive of NS. One of them died in the neonatal period because of cardiac failure. Targeted sequencing revealed de novo MRAS variants, c.203C > T (p.Thr68Ile) and c.67G > C (p.Gly23Arg) as causative events. MRAS has only recently been related to NS based on the observation of two unrelated affected individuals with de novo variants involving the same codons here found mutated. Gly23 and Thr68 are highly conserved residues, and the corresponding codons are known hotspots for RASopathy-associated mutations in other RAS proteins. Functional analyses documented high level of activation of MRAS mutants due to impaired GTPase activity, which was associated with constitutive plasma membrane targeting, prolonged localization in non-raft microdomains, enhanced binding to PPP1CB and SHOC2 protein, and variably increased MAPK and PI3K-AKT activation. This report provides additional evidence that a narrow spectrum of activating mutations in MRAS represents another rare cause of NS, and that MRAS has to be counted among the RASopathy genes predisposing to HCM. Moreover, our findings further emphasize the relevance of the MRAS-SHOC2-PPP1CB axis in the control of MAPK signaling, and the contribution of both MAPK and PI3K-AKT pathways in MRAS functional upregulation.


Assuntos
Cardiomiopatia Hipertrófica/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Síndrome de Noonan/genética , Proteína Fosfatase 1/genética , Proteínas ras/genética , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/patologia , Pré-Escolar , Feminino , Mutação com Ganho de Função/genética , Humanos , Lactente , Recém-Nascido , Sistema de Sinalização das MAP Quinases/genética , Masculino , Síndrome de Noonan/complicações , Síndrome de Noonan/patologia , Fenótipo , Fosfatidilinositol 3-Quinases
2.
PLoS Genet ; 13(3): e1006684, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28346493

RESUMO

Noonan syndrome (NS) is characterized by reduced growth, craniofacial abnormalities, congenital heart defects, and variable cognitive deficits. NS belongs to the RASopathies, genetic conditions linked to mutations in components and regulators of the Ras signaling pathway. Approximately 50% of NS cases are caused by mutations in PTPN11. However, the molecular mechanisms underlying cognitive impairments in NS patients are still poorly understood. Here, we report the generation and characterization of a new conditional mouse strain that expresses the overactive Ptpn11D61Y allele only in the forebrain. Unlike mice with a global expression of this mutation, this strain is viable and without severe systemic phenotype, but shows lower exploratory activity and reduced memory specificity, which is in line with a causal role of disturbed neuronal Ptpn11 signaling in the development of NS-linked cognitive deficits. To explore the underlying mechanisms we investigated the neuronal activity-regulated Ras signaling in brains and neuronal cultures derived from this model. We observed an altered surface expression and trafficking of synaptic glutamate receptors, which are crucial for hippocampal neuronal plasticity. Furthermore, we show that the neuronal activity-induced ERK signaling, as well as the consecutive regulation of gene expression are strongly perturbed. Microarray-based hippocampal gene expression profiling revealed profound differences in the basal state and upon stimulation of neuronal activity. The neuronal activity-dependent gene regulation was strongly attenuated in Ptpn11D61Y neurons. In silico analysis of functional networks revealed changes in the cellular signaling beyond the dysregulation of Ras/MAPK signaling that is nearly exclusively discussed in the context of NS at present. Importantly, changes in PI3K/AKT/mTOR and JAK/STAT signaling were experimentally confirmed. In summary, this study uncovers aberrant neuronal activity-induced signaling and regulation of gene expression in Ptpn11D61Y mice and suggests that these deficits contribute to the pathophysiology of cognitive impairments in NS.


Assuntos
Modelos Animais de Doenças , Expressão Gênica , Mutação , Neurônios/metabolismo , Síndrome de Noonan/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Transdução de Sinais/genética , Animais , Western Blotting , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Humanos , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome de Noonan/metabolismo , Síndrome de Noonan/fisiopatologia , Prosencéfalo/metabolismo , Prosencéfalo/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas ras/genética , Proteínas ras/metabolismo
4.
Biochem Soc Trans ; 46(6): 1393-1406, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30381334

RESUMO

RAF (rapidly accelerated fibrosarcoma) Ser/Thr kinases (ARAF, BRAF, and CRAF) link the RAS (rat sarcoma) protein family with the MAPK (mitogen-activated protein kinase) pathway and control cell growth, differentiation, development, aging, and tumorigenesis. Their activity is specifically modulated by protein-protein interactions, post-translational modifications, and conformational changes in specific spatiotemporal patterns via various upstream regulators, including the kinases, phosphatase, GTPases, and scaffold and modulator proteins. Dephosphorylation of Ser-259 (CRAF numbering) and dissociation of 14-3-3 release the RAF regulatory domains RAS-binding domain and cysteine-rich domain for interaction with RAS-GTP and membrane lipids. This, in turn, results in RAF phosphorylation at Ser-621 and 14-3-3 reassociation, followed by its dimerization and ultimately substrate binding and phosphorylation. This review focuses on structural understanding of how distinct binding partners trigger a cascade of molecular events that induces RAF kinase activation.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas A-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Animais , Humanos , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas A-raf/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-raf/genética
5.
Cytokine ; 106: 1-11, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29501710

RESUMO

The self-renewal capacity of germline derived stem cells (GSCs) makes them an ideal source for research and use in clinics. Despite the presence of active gene network similarities between embryonic stem cells (ESCs) and GSCs, there are unanswered questions regarding the roles of evolutionary conserved genes in GSCs. To determine the reprogramming potential of germ cell- specific genes, we designed a polycistronic gene cassette expressing Stella, Oct4 and Nanos2 in a lentiviral-based vector. Deep transcriptome analysis showed the activation of a set of pluripotency and germ-cell-specific markers and the downregulation of innate immune system. The global shut down of antiviral genes included MHC class I, interferon response genes and dsRNA 2'-5'-oligoadenylate synthetase are critical pathways that has been affected . Individual expression of each factor highlighted suppressive effect of Nanos2 on genes such as Isg15 and Oasl2. Collectively, to our knowledge this is the first report showing that Nanos2 could be considered as an immunosuppressive factor. Furthermore, our results demonstrate suppression of endogenous retrotransposons that harbor immune response but further analysis require to uncover the correlation between transposon suppression and immune response in germ cell development.


Assuntos
Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Imunidade Inata/genética , Fator 3 de Transcrição de Octâmero/metabolismo , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Animais , Reprogramação Celular , Proteínas Cromossômicas não Histona , Elementos de DNA Transponíveis/genética , Regulação para Baixo/genética , Retrovirus Endógenos/metabolismo , Redes Reguladoras de Genes , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante/genética
6.
Cell Commun Signal ; 16(1): 96, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518391

RESUMO

BACKGROUND: Human pluripotent stem cells (PSCs) open new windows for basic research and regenerative medicine due to their remarkable properties, i.e. their ability to self-renew indefinitely and being pluripotent. There are different, conflicting data related to the role of basic fibroblast growth factor (bFGF) in intracellular signal transduction and the regulation of pluripotency of PSCs. Here, we investigated the effect of bFGF and its downstream pathways in pluripotent vs. differentiated human induced (hi) PSCs. METHODS: bFGF downstream signaling pathways were investigated in long-term culture of hiPSCs from pluripotent to differentiated state (withdrawing bFGF) using immunoblotting, immunocytochemistry and qPCR. Subcellular distribution of signaling components were investigated by simple fractionation and immunoblotting upon bFGF stimulation. Finally, RAS activity and RAS isoforms were studied using RAS assays both after short- and long-term culture in response to bFGF stimulation. RESULTS: Our results revealed that hiPSCs were differentiated into the ectoderm lineage upon withdrawing bFGF as an essential pluripotency mediator. Pluripotency markers OCT4, SOX2 and NANOG were downregulated, following a drastic decrease in MAPK pathway activity levels. Notably, a remarkable increase in phosphorylation levels of p38 and JAK/STAT3 was observed in differentiated hiPSCs, while the PI3K/AKT and JNK pathways remained active during differentiation. Our data further indicate that among the RAS paralogs, NRAS predominantly activates the MAPK pathway in hiPSCs. CONCLUSION: Collectively, the MAPK pathway appears to be the prime signaling pathway downstream of bFGF for maintaining pluripotency in hiPSCs and among the MAPK pathways, the activity of NRAS-RAF-MEK-ERK is decreased during differentiation, whereas p38 is activated and JNK remains constant.


Assuntos
Fator 2 de Crescimento de Fibroblastos/farmacologia , GTP Fosfo-Hidrolases/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Diferenciação Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HeLa , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
J Biol Chem ; 291(16): 8399-413, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26884329

RESUMO

Hepatic stellate cells (HSCs) were recently identified as liver-resident mesenchymal stem cells. HSCs are activated after liver injury and involved in pivotal processes, such as liver development, immunoregulation, regeneration, and also fibrogenesis. To date, several studies have reported candidate pathways that regulate the plasticity of HSCs during physiological and pathophysiological processes. Here we analyzed the expression changes and activity of the RAS family GTPases and thereby investigated the signaling networks of quiescent HSCs versus activated HSCs. For the first time, we report that embryonic stem cell-expressed RAS (ERAS) is specifically expressed in quiescent HSCs and down-regulated during HSC activation via promoter DNA methylation. Notably, in quiescent HSCs, the high level of ERAS protein correlates with the activation of AKT, STAT3, mTORC2, and HIPPO signaling pathways and inactivation of FOXO1 and YAP. Our data strongly indicate that in quiescent HSCs, ERAS targets AKT via two distinct pathways driven by PI3Kα/δ and mTORC2, whereas in activated HSCs, RAS signaling shifts to RAF-MEK-ERK. Thus, in contrast to the reported role of ERAS in tumor cells associated with cell proliferation, our findings indicate that ERAS is important to maintain quiescence in HSCs.


Assuntos
Metilação de DNA/fisiologia , Células Estreladas do Fígado/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Oncogênica p21(ras)/biossíntese , Regiões Promotoras Genéticas/fisiologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células Estreladas do Fígado/citologia , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteína Oncogênica p21(ras)/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Sinalização YAP
8.
J Biol Chem ; 290(25): 15892-15903, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25940089

RESUMO

E-RAS is a member of the RAS family specifically expressed in embryonic stem cells, gastric tumors, and hepatic stellate cells. Unlike classical RAS isoforms (H-, N-, and K-RAS4B), E-RAS has, in addition to striking and remarkable sequence deviations, an extended 38-amino acid-long unique N-terminal region with still unknown functions. We investigated the molecular mechanism of E-RAS regulation and function with respect to its sequence and structural features. We found that N-terminal extension of E-RAS is important for E-RAS signaling activity. E-RAS protein most remarkably revealed a different mode of effector interaction as compared with H-RAS, which correlates with deviations in the effector-binding site of E-RAS. Of all these residues, tryptophan 79 (arginine 41 in H-RAS), in the interswitch region, modulates the effector selectivity of RAS proteins from H-RAS to E-RAS features.


Assuntos
Proteína Oncogênica p21(ras)/metabolismo , Transdução de Sinais/fisiologia , Motivos de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Cães , Humanos , Células Madin Darby de Rim Canino , Proteína Oncogênica p21(ras)/genética , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Homologia de Sequência de Aminoácidos
10.
J Biol Chem ; 289(10): 6839-6849, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24443565

RESUMO

The three deleted in liver cancer genes (DLC1-3) encode Rho-specific GTPase-activating proteins (RhoGAPs). Their expression is frequently silenced in a variety of cancers. The RhoGAP activity, which is required for full DLC-dependent tumor suppressor activity, can be inhibited by the Src homology 3 (SH3) domain of a Ras-specific GAP (p120RasGAP). Here, we comprehensively investigated the molecular mechanism underlying cross-talk between two distinct regulators of small GTP-binding proteins using structural and biochemical methods. We demonstrate that only the SH3 domain of p120 selectively inhibits the RhoGAP activity of all three DLC isoforms as compared with a large set of other representative SH3 or RhoGAP proteins. Structural and mutational analyses provide new insights into a putative interaction mode of the p120 SH3 domain with the DLC1 RhoGAP domain that is atypical and does not follow the classical PXXP-directed interaction. Hence, p120 associates with the DLC1 RhoGAP domain by targeting the catalytic arginine finger and thus by competitively and very potently inhibiting RhoGAP activity. The novel findings of this study shed light on the molecular mechanisms underlying the DLC inhibitory effects of p120 and suggest a functional cross-talk between Ras and Rho proteins at the level of regulatory proteins.


Assuntos
Domínio Catalítico , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteína p120 Ativadora de GTPase/química , Alanina/química , Análise Mutacional de DNA , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Humanos , Redes e Vias Metabólicas , Ligação Proteica , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteína p120 Ativadora de GTPase/genética
11.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38499327

RESUMO

Cellular responses leading to development, proliferation, and differentiation depend on RAF/MEK/ERK signaling, which integrates and amplifies signals from various stimuli for downstream cellular responses. C-RAF activation has been reported in many types of tumor cell proliferation and developmental disorders, necessitating the discovery of potential C-RAF protein regulators. Here, we identify a novel and specific protein interaction between C-RAF among the RAF kinase paralogs, and SIRT4 among the mitochondrial sirtuin family members SIRT3, SIRT4, and SIRT5. Structurally, C-RAF binds to SIRT4 through the N-terminal cysteine-rich domain, whereas SIRT4 predominantly requires the C-terminus for full interaction with C-RAF. Interestingly, SIRT4 specifically interacts with C-RAF in a pre-signaling inactive (serine 259-phosphorylated) state. Consistent with this finding, the expression of SIRT4 in HEK293 cells results in an up-regulation of pS259-C-RAF levels and a concomitant reduction in MAPK signaling as evidenced by strongly decreased phospho-ERK signals. Thus, we propose an additional extra-mitochondrial function of SIRT4 as a cytosolic tumor suppressor of C-RAF-MAPK signaling, besides its metabolic tumor suppressor role of glutamate dehydrogenase and glutamate levels in mitochondria.


Assuntos
Sirtuínas , Humanos , Células HEK293 , Sirtuínas/genética , Sirtuínas/metabolismo , Transdução de Sinais , Mitocôndrias/metabolismo , Quinases raf/genética , Quinases raf/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
12.
Crit Rev Oncol Hematol ; 183: 103928, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36717007

RESUMO

Testicular germ cell tumors (TGCTs) are a common malignancy occurring in young adult men. The various genetic risk factors have been suggested to contribute to TGCT pathogenesis, however, they have a distinct mutational profile with a low rate of somatic point mutations, more frequent chromosomal gains, and aneuploidy. The most frequently mutated oncogenes in human cancers are RAS oncogenes, while their impact on testicular carcinogenesis and refractory disease is still poorly understood. In this mini-review, we summarize current knowledge on genetic alternations of RAS signaling-associated genes (the single nucleotide polymorphisms and point mutations) in this particular cancer type and highlight their link to chemotherapy resistance mechanisms. We also mention the impact of epigenetic changes on TGCT progression. Lastly, we propose a model for RAS-dependent signaling networks, regulation, cross-talks, and outcomes in TGCTs.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Seminoma , Neoplasias Testiculares , Humanos , Masculino , Adulto Jovem , Genômica , Seminoma/patologia , Neoplasias Testiculares/patologia , Proteínas ras/metabolismo
13.
J Biomol Struct Dyn ; 41(24): 15328-15338, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36927384

RESUMO

The germline mutations in the C-terminus of CRAF kinase, particularly L603, and S612T/L613V, are associated with congenital heart disorders, for example, dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). The experimental data suggest that genetic alternation at position 603 impairs, while those at positions 612/613 enhance the CRAF kinase activity. However, the underlying mechanistic details by which these mutations increase or decrease kinase activity remain elusive. Therefore, we applied molecular dynamic simulation to investigate the impacts of these point mutations on the conformation of the CRAF kinase domain. The results revealed that the substitution of Leucine 603 for proline transits the kinase domain to a state that exhibits the molecular hallmarks of an inactive kinase, for example, a closed activation loop, 'αC-helix out' conformation and a distorted regulatory hydrophobic spine. However, two HCM-associated variants (S612T and L613V) show features of an active conformation, such as an open activation loop conformation, 'αC-helix in', the assembly of the hydrophobic spine, and more surface-exposed catalytic residues of phosphoryl transfer reaction. Overall, our study provides a mechanistic basis for the contradictory effects of the CRAF variants associated with HCM and DCM.


Assuntos
Cardiomiopatia Hipertrófica , Proteínas Proto-Oncogênicas c-raf , Humanos , Cardiomiopatias/genética , Cardiomiopatia Hipertrófica/genética , Mutação , Fosforilação , Conformação Proteica , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/genética
14.
Cells ; 12(13)2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37443814

RESUMO

Pathological cardiac hypertrophy is a key risk factor for the development of heart failure and predisposes individuals to cardiac arrhythmia and sudden death. While physiological cardiac hypertrophy is adaptive, hypertrophy resulting from conditions comprising hypertension, aortic stenosis, or genetic mutations, such as hypertrophic cardiomyopathy, is maladaptive. Here, we highlight the essential role and reciprocal interactions involving both cardiomyocytes and non-myocardial cells in response to pathological conditions. Prolonged cardiovascular stress causes cardiomyocytes and non-myocardial cells to enter an activated state releasing numerous pro-hypertrophic, pro-fibrotic, and pro-inflammatory mediators such as vasoactive hormones, growth factors, and cytokines, i.e., commencing signaling events that collectively cause cardiac hypertrophy. Fibrotic remodeling is mediated by cardiac fibroblasts as the central players, but also endothelial cells and resident and infiltrating immune cells enhance these processes. Many of these hypertrophic mediators are now being integrated into computational models that provide system-level insights and will help to translate our knowledge into new pharmacological targets. This perspective article summarizes the last decades' advances in cardiac hypertrophy research and discusses the herein-involved complex myocardial microenvironment and signaling components.


Assuntos
Células Endoteliais , Insuficiência Cardíaca , Humanos , Células Endoteliais/metabolismo , Cardiomegalia/patologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/metabolismo , Fibrose
15.
Commun Biol ; 6(1): 657, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344639

RESUMO

Noonan syndrome (NS), the most common among RASopathies, is caused by germline variants in genes encoding components of the RAS-MAPK pathway. Distinct variants, including the recurrent Ser257Leu substitution in RAF1, are associated with severe hypertrophic cardiomyopathy (HCM). Here, we investigated the elusive mechanistic link between NS-associated RAF1S257L and HCM using three-dimensional cardiac bodies and bioartificial cardiac tissues generated from patient-derived induced pluripotent stem cells (iPSCs) harboring the pathogenic RAF1 c.770 C > T missense change. We characterize the molecular, structural, and functional consequences of aberrant RAF1-associated signaling on the cardiac models. Ultrastructural assessment of the sarcomere revealed a shortening of the I-bands along the Z disc area in both iPSC-derived RAF1S257L cardiomyocytes and myocardial tissue biopsies. The aforementioned changes correlated with the isoform shift of titin from a longer (N2BA) to a shorter isoform (N2B) that also affected the active force generation and contractile tensions. The genotype-phenotype correlation was confirmed using cardiomyocyte progeny of an isogenic gene-corrected RAF1S257L-iPSC line and was mainly reversed by MEK inhibition. Collectively, our findings uncovered a direct link between a RASopathy gene variant and the abnormal sarcomere structure resulting in a cardiac dysfunction that remarkably recapitulates the human disease.


Assuntos
Cardiomiopatia Hipertrófica , Síndrome de Noonan , Proteínas Proto-Oncogênicas c-raf , Humanos , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Mutação em Linhagem Germinativa , Miócitos Cardíacos/metabolismo , Síndrome de Noonan/genética , Síndrome de Noonan/complicações , Síndrome de Noonan/metabolismo , Transdução de Sinais , Proteínas Proto-Oncogênicas c-raf/genética
16.
Biochem Cell Biol ; 90(2): 115-23, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22166043

RESUMO

Induced pluripotent stem cells are generated by direct reprogramming of somatic cells with the introduction of defined transcription factors or other means. Clinical applications of induced pluripotent stem cells are the latest of stem cell therapy approaches due to overcoming problems associated with insufficient cells from conventional sources and immune rejections. In practice, this is restricted by 4 major barriers including the use of genetic manipulations for delivering the reprogramming factors, low efficiency of this process, slow kinetics of the direct reprogramming, and potential for tumor development. Here, we review the latest achievements in improving reprogramming efficiency by alternative strategies. These alternatives mainly involve the replacement of genetic reprogramming factors with small molecules or other factors.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Animais , Técnicas de Cultura de Células , Desdiferenciação Celular , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Engenharia Genética , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Transgenes
17.
Front Cell Dev Biol ; 10: 987754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274845

RESUMO

Stress-activated MAP kinase-interacting protein 1 (SIN1) is a central member of the mTORC2 complex that contains an N-terminal domain (NTD), a conserved region in the middle (CRIM), a RAS-binding domain (RBD), and a pleckstrin homology domain. Recent studies provided valuable structural and functional insights into the interactions of SIN1 and the RAS-binding domain of RAS proteins. However, the mechanism for a reciprocal interaction of the RBD-PH tandem with RAS proteins and the membrane as an upstream event to spatiotemporal mTORC2 regulation is not clear. The biochemical assays in this study led to the following results: 1) all classical RAS paralogs, including HRAS, KRAS4A, KRAS4B, and NRAS, can bind to SIN1-RBD in biophysical and SIN1 full length (FL) in cell biology experiments; 2) the SIN1-PH domain modulates interactions with various types of membrane phosphoinositides and constantly maintains a pool of SIN1 at the membrane; and 3) a KRAS4A-dependent decrease in membrane binding of the SIN1-RBD-PH tandem was observed, suggesting for the first time a mechanistic influence of KRAS4A on SIN1 membrane association. Our study strengthens the current mechanistic understanding of SIN1-RAS interaction and suggests membrane interaction as a key event in the control of mTORC2-dependent and mTORC2-independent SIN1 function.

18.
Cells ; 11(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35159317

RESUMO

Embryonic stem cell-expressed Ras (ERas) is an atypical constitutively active member of the Ras family and controls distinct signaling pathways, which are critical, for instance, for the maintenance of quiescent hepatic stellate cells (HSCs). Unlike classical Ras paralogs, ERas has a unique N-terminal extension (Nex) with as yet unknown function. In this study, we employed affinity pull-down and quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses and identified 76 novel binding proteins for human and rat ERas Nex peptides, localized in different subcellular compartments and involved in various cellular processes. One of the identified Nex-binding proteins is the nonmitochondrial, cytosolic arginase 1 (ARG1), a key enzyme of the urea cycle and involved in the de novo synthesis of polyamines, such as spermidine and spermine. Here, we show, for the first time, a high-affinity interaction between ERas Nex and purified ARG1 as well as their subcellular colocalization. The inhibition of ARG1 activity strikingly accelerates the activation of HSCs ex vivo, suggesting a central role of ARG1 activity in the maintenance of HSC quiescence.


Assuntos
Arginase , Células Estreladas do Fígado , Proteína Oncogênica p21(ras) , Animais , Arginase/metabolismo , Cromatografia Líquida , Células-Tronco Embrionárias/metabolismo , Células Estreladas do Fígado/metabolismo , Humanos , Proteína Oncogênica p21(ras)/metabolismo , Ratos , Espectrometria de Massas em Tandem
19.
FEBS J ; 288(3): 837-860, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32525608

RESUMO

Silencing of the fragile X mental retardation 1 (FMR1) gene and consequently lack of synthesis of FMR protein (FMRP) are associated with fragile X syndrome, which is one of the most prevalent inherited intellectual disabilities, with additional roles in increased viral infection, liver disease, and reduced cancer risk. FMRP plays critical roles in chromatin dynamics, RNA binding, mRNA transport, and mRNA translation. However, the underlying molecular mechanisms, including the (sub)cellular FMRP protein networks, remain elusive. Here, we employed affinity pull-down and quantitative LC-MS/MS analyses with FMRP. We identified known and novel candidate FMRP-binding proteins as well as protein complexes. FMRP interacted with 180 proteins, 28 of which interacted with its N terminus. Interaction with the C terminus of FMRP was observed for 102 proteins, and 48 proteins interacted with both termini. This FMRP interactome comprises known FMRP-binding proteins, including the ribosomal proteins FXR1P, NUFIP2, Caprin-1, and numerous novel FMRP candidate interacting proteins that localize to different subcellular compartments, including CARF, LARP1, LEO1, NOG2, G3BP1, NONO, NPM1, SKIP, SND1, SQSTM1, and TRIM28. Our data considerably expand the protein and RNA interaction networks of FMRP, which thereby suggest that, in addition to its known functions, FMRP participates in transcription, RNA metabolism, ribonucleoprotein stress granule formation, translation, DNA damage response, chromatin dynamics, cell cycle regulation, ribosome biogenesis, miRNA biogenesis, and mitochondrial organization. Thus, FMRP seems associated with multiple cellular processes both under normal and cell stress conditions in neuronal as well as non-neuronal cell types, as exemplified by its role in the formation of stress granules.


Assuntos
Proteínas de Transporte/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Mapas de Interação de Proteínas , Estresse Fisiológico , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Cromatografia Líquida/métodos , Proteína do X Frágil da Deficiência Intelectual/genética , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Ligação Proteica , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Espectrometria de Massas em Tandem/métodos
20.
Int J Radiat Biol ; 96(8): 1051-1059, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32412318

RESUMO

Background: Use of ionizing radiation (IR) is a common therapeutic modality for patients with colon carcinoma, although resistance of cancer cells and unintended toxicity reduce clinical outcomes.Purpose: To enhance radioresponse of colon cancer cells, we designed a novel approach using auraptene (AUR) in combination with ionizing radiation (IR).Methods: For in vitro studies, CT26 cells were pretreated with AUR and irradiated at different doses. Then, cell viability was evaluated by alamarBlue assay, and the mechanism of cell death was elucidated using annexin V-PI. To determine efficacy of our combined therapeutic modality in vivo, AUR was injected intraperitoneally to murine models of colon carcinoma followed by IR, and then quantitative measurements and histopathological examinations were performed. For molecular analyses, real time PCR and Western blot were carried out.Results: Assessment of cell viability indicated significant enhancement of IR effects by AUR that was also confirmed by increased number of apoptotic cells. In vivo studies further demonstrated improved outcome in IR, since significant regression in tumor size was observed after administration of AUR + IR. Molecular analyses revealed down regulation of Cyclin D1 and CD44, along with involvement of PI3K-AKT-mTORC signaling pathway and Caspase-3 in observed combinatorial effects.Conclusion: Taken together, current findings support our previous reports on sensitizing effects of AUR and that AUR could be used as a promising adjunct to IR in cancer treatment.


Assuntos
Neoplasias do Colo/patologia , Cumarínicos/administração & dosagem , Cumarínicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/radioterapia , Terapia Combinada , Cumarínicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA