Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Gen Virol ; 105(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39073409

RESUMO

Curly top disease, caused by beet curly top virus (BCTV), is among the most serious viral diseases affecting sugar beets in western USA. The virus is exclusively transmitted by the beet leafhopper (BLH, Circulifer tenellus) in a circulative and non-propagative manner. Despite the growing knowledge on virus-vector interactions, our understanding of the molecular interactions between BCTV and BLH is hampered by limited information regarding the virus impact on the vector and the lack of genomic and transcriptomic resources for BLH. This study unveils the significant impact of BCTV on both the performance and transcriptome response of BLHs. Viruliferous BLHs had higher fecundity than non-viruliferous counterparts, which was evident by upregulation of differentially expressed transcripts (DETs) associated with development, viability and fertility of germline and embryos in viruliferous insects. Conversely, most DETs associated with muscle movement and locomotor activities were downregulated in viruliferous insects, implying potential behavioural modifications by BCTV. Additionally, a great proportion of DETs related to innate immunity and detoxification were upregulated in viruliferous insects. Viral infection also induced notable alterations in primary metabolisms, including energy metabolism, namely glucosidases, lipid digestion and transport, and protein degradation, along with other cellular functions, particularly in chromatin remodelling and DNA repair. This study represents the first comprehensive transcriptome analysis for BLH. The presented findings provide new insights into the multifaceted effects of viral infection on various biological processes in BLH, offering a foundation for future investigations into the complex virus-vector relationship and potential management strategies for curly top disease.


Assuntos
Beta vulgaris , Perfilação da Expressão Gênica , Hemípteros , Insetos Vetores , Doenças das Plantas , Animais , Hemípteros/virologia , Hemípteros/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Insetos Vetores/virologia , Insetos Vetores/genética , Beta vulgaris/virologia , Transcriptoma , Geminiviridae/genética , Geminiviridae/fisiologia , Fertilidade/genética
2.
J Exp Bot ; 74(21): 6860-6873, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37696760

RESUMO

MYZUS PERSICAE-INDUCED LIPASE1 (MPL1) encodes a lipase in Arabidopsis thaliana that is required for limiting infestation by the green peach aphid (GPA; Myzus persicae), an important phloem sap-consuming insect pest. Previously, we demonstrated that MPL1 expression was up-regulated in response to GPA infestation, and GPA fecundity was higher on the mpl1 mutant, compared with the wild-type (WT), and lower on 35S:MPL1 plants that constitutively expressed MPL1 from the 35S promoter. Here, we show that the MPL1 promoter is active in the phloem and expression of the MPL1 coding sequence from the phloem-specific SUC2 promoter in mpl1 is sufficient to restore resistance to GPA. The GPA infestation-associated up-regulation of MPL1 requires CYCLOPHILIN 20-3 (CYP20-3), which encodes a 12-oxo-phytodienoic acid (OPDA)-binding protein that is involved in OPDA signaling, and is required for limiting GPA infestation. OPDA promotes MPL1 expression to limit GPA fecundity, a process that requires CYP20-3 function. These results along with our observation that constitutive expression of MPL1 from the 35S promoter restores resistance to GPA in the cyp20-3 mutant, and MPL1 acts in a feedback loop to limit OPDA levels in GPA-infested plants, suggest that an interplay between MPL1, OPDA, and CYP20-3 contributes to resistance to GPA.


Assuntos
Afídeos , Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Lipase/genética , Lipase/metabolismo , Afídeos/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Mutação , Doenças das Plantas , Regulação da Expressão Gênica de Plantas
3.
Plant Physiol ; 176(1): 879-890, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29133373

RESUMO

The actin cytoskeleton network has an important role in plant cell growth, division, and stress response. Actin-depolymerizing factors (ADFs) are a group of actin-binding proteins that contribute to reorganization of the actin network. Here, we show that the Arabidopsis (Arabidopsis thaliana) ADF3 is required in the phloem for controlling infestation by Myzus persicae Sülzer, commonly known as the green peach aphid (GPA), which is an important phloem sap-consuming pest of more than fifty plant families. In agreement with a role for the actin-depolymerizing function of ADF3 in defense against the GPA, we show that resistance in adf3 was restored by overexpression of the related ADF4 and the actin cytoskeleton destabilizers, cytochalasin D and latrunculin B. Electrical monitoring of the GPA feeding behavior indicates that the GPA stylets found sieve elements faster when feeding on the adf3 mutant compared to the wild-type plant. In addition, once they found the sieve elements, the GPA fed for a more prolonged period from sieve elements of adf3 compared to the wild-type plant. The longer feeding period correlated with an increase in fecundity and population size of the GPA and a parallel reduction in callose deposition in the adf3 mutant. The adf3-conferred susceptibility to GPA was overcome by expression of the ADF3 coding sequence from the phloem-specific SUC2 promoter, thus confirming the importance of ADF3 function in the phloem. We further demonstrate that the ADF3-dependent defense mechanism is linked to the transcriptional up-regulation of PHYTOALEXIN-DEFICIENT4, which is an important regulator of defenses against the GPA.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Afídeos/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/parasitologia , Comportamento Alimentar , Floema/parasitologia , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/genética , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hidrolases de Éster Carboxílico/metabolismo , Resistência à Doença , Genes de Plantas , Mutação/genética , Doenças das Plantas/parasitologia , Folhas de Planta/parasitologia
4.
Mol Plant Microbe Interact ; 28(8): 943-53, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25915452

RESUMO

Fusarium graminearum causes Fusarium head blight (FHB) disease in wheat and other cereals. F. graminearum also causes disease in Arabidopsis thaliana. In both Arabidopsis and wheat, F. graminearum infection is limited by salicylic acid (SA) signaling. Here, we show that, in Arabidopsis, the defense regulator EDS1 (ENHANCED DISEASE SUSCEPTIBILITY1) and its interacting partners, PAD4 (PHYTOALEXIN-DEFICIENT4) and SAG101 (SENESCENCE-ASSOCIATED GENE101), promote SA accumulation to curtail F. graminearum infection. Characterization of plants expressing the PAD4 noninteracting eds1(L262P) indicated that interaction between EDS1 and PAD4 is critical for limiting F. graminearum infection. A conserved serine in the predicted acyl hydrolase catalytic triad of PAD4, which is not required for defense against bacterial and oomycete pathogens, is necessary for limiting F. graminearum infection. These results suggest a molecular configuration of PAD4 in Arabidopsis defense against F. graminearum that is different from its defense contribution against other pathogens. We further show that constitutive expression of Arabidopsis PAD4 can enhance FHB resistance in Arabidopsis and wheat. Taken together with previous studies of wheat and Arabidopsis expressing salicylate hydroxylase or the SA-response regulator NPR1 (NON-EXPRESSER OF PR GENES1), our results show that exploring fundamental processes in a model plant provides important leads to manipulating crops for improved disease resistance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Hidrolases de Éster Carboxílico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fusarium/patogenicidade , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hidrolases de Éster Carboxílico/genética , Domínio Catalítico , Proteínas de Ligação a DNA/genética , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo , Serina/metabolismo
5.
Mol Plant Microbe Interact ; 28(10): 1142-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26075826

RESUMO

Fusarium graminearum causes Fusarium head blight, an important disease of wheat. F. graminearum can also cause disease in Arabidopsis thaliana. Here, we show that the Arabidopsis LOX1 and LOX5 genes, which encode 9-lipoxygenases (9-LOXs), are targeted during this interaction to facilitate infection. LOX1 and LOX5 expression were upregulated in F. graminearum-inoculated plants and loss of LOX1 or LOX5 function resulted in enhanced disease resistance in the corresponding mutant plants. The enhanced resistance to F. graminearum infection in the lox1 and lox5 mutants was accompanied by more robust induction of salicylic acid (SA) accumulation and signaling and attenuation of jasmonic acid (JA) signaling in response to infection. The lox1- and lox5-conferred resistance was diminished in plants expressing the SA-degrading salicylate hydroxylase or by the application of methyl-JA. Results presented here suggest that plant 9-LOXs are engaged during infection to control the balance between SA and JA signaling to facilitate infection. Furthermore, since silencing of TaLpx-1 encoding a 9-LOX with homology to LOX1 and LOX5, resulted in enhanced resistance against F. graminearum in wheat, we suggest that 9-LOXs have a conserved role as susceptibility factors in disease caused by this important fungus in Arabidopsis and wheat.


Assuntos
Arabidopsis/enzimologia , Fusarium/fisiologia , Lipoxigenases/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Triticum/enzimologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Sequência de Bases , Ciclopentanos/metabolismo , Resistência à Doença , Técnicas de Silenciamento de Genes , Genes Reporter , Lipoxigenases/metabolismo , Dados de Sequência Molecular , Mutação , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ácido Salicílico/metabolismo , Análise de Sequência de DNA , Transdução de Sinais , Triticum/genética , Triticum/imunologia , Triticum/microbiologia
6.
Plant Cell ; 24(4): 1643-53, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22474183

RESUMO

Oxylipins function as signaling molecules in plant growth and development and contribute to defense against stress. Here, we show that oxylipins also facilitate infestation of Arabidopsis thaliana shoots by the phloem sap-consuming green peach aphid (GPA; Myzus persicae), an agronomically important insect pest. GPAs had difficulty feeding from sieve elements and tapping into the xylem of lipoxygenase5 (lox5) mutant plants defective in LOX activity. These defects in GPA performance in the lox5 mutant were accompanied by reduced water content of GPAs and a smaller population size of GPAs in the mutant compared with the wild-type plant. LOX5 expression was rapidly induced in roots in response to infestation of shoots by GPAs. In parallel, levels of LOX5-derived oxylipins increased in roots and in petiole exudates of GPA-colonized plants. Application of 9-hydroxyoctadecadienoic acid (an oxylipin produced by the LOX5 enzyme) to roots restored water content and GPA population size in lox5 plants, thus confirming that a LOX5-derived oxylipin promotes infestation of the foliage by GPAs. Micrografting experiments demonstrated that GPA performance on foliage is influenced by the LOX5 genotype in roots, thus demonstrating the importance of root-derived oxylipins in colonization of aboveground organs by an insect.


Assuntos
Afídeos/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/parasitologia , Oxilipinas/farmacologia , Folhas de Planta/parasitologia , Raízes de Plantas/metabolismo , Prunus/parasitologia , Animais , Afídeos/crescimento & desenvolvimento , Arabidopsis/enzimologia , Araquidonato 5-Lipoxigenase/metabolismo , Fertilidade/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Fenótipo , Exsudatos de Plantas/metabolismo , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/parasitologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/parasitologia , Densidade Demográfica , Fatores de Tempo , Xilema/efeitos dos fármacos , Xilema/parasitologia
7.
Plant Genome ; 17(2): e20452, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38654377

RESUMO

Durable host plant resistance (HPR) to insect pests is critical for sustainable agriculture. Natural variation exists for aphid HPR in sorghum (Sorghum bicolor), but the genetic architecture and phenotype have not been clarified and characterized for most sources. In order to assess the current threat of a sorghum aphid (Melanaphis sorghi) biotype shift, we characterized the phenotype of Resistance to Melanaphis sorghi 1 (RMES1) and additional HPR architecture in globally admixed populations selected under severe sorghum aphid infestation in Haiti. We found RMES1 reduces sorghum aphid fecundity but not bird cherry-oat aphid (Rhopalosiphum padi) fecundity, suggesting a discriminant HPR response typical of gene-for-gene interaction. A second resistant gene, Resistance to Melanaphis sorghi 2 (RMES2), was more frequent than RMES1 resistant alleles in landraces and historic breeding lines. RMES2 contributes early and mid-season aphid resistance in a segregating F2 population; however, RMES1 was only significant with mid-season fitness. In a fixed population with high sorghum aphid resistance, RMES1 and RMES2 were selected for demonstrating a lack of severe antagonistic pleiotropy. Associations with resistance colocated with cyanogenic glucoside biosynthesis genes support additional HPR sources. Globally, therefore, an HPR source vulnerable to biotype shift via selection pressure (RMES1) is bolstered by a second common source of resistance in breeding programs (RMES2), which may be staving off a biotype shift and is critical for sustainable sorghum production.


Assuntos
Afídeos , Sorghum , Afídeos/fisiologia , Afídeos/genética , Sorghum/genética , Sorghum/parasitologia , Animais , Genes de Plantas , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/parasitologia
8.
Plant J ; 71(1): 161-72, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22385469

RESUMO

Abietane diterpenoids are major constituents of conifer resins that have important industrial and medicinal applications. However, their function in plants is poorly understood. Here we show that dehydroabietinal (DA), an abietane diterpenoid, is an activator of systemic acquired resistance (SAR), which is an inducible defense mechanism that is activated in the distal, non-colonized, organs of a plant that has experienced a local foliar infection. DA was purified as a SAR-activating factor from vascular sap of Arabidopsis thaliana leaves treated with a SAR-inducing microbe. Locally applied DA is translocated through the plant and systemically induces the accumulation of salicylic acid (SA), an important activator of defense, thus leading to enhanced resistance against subsequent infections. The NPR1 (NON-EXPRESSOR OF PR GENES1), FMO1 (FLAVIN-DEPENDENT MONOOXYGENASE1) and DIR1 (DEFECTIVE IN INDUCED RESISTANCE1) genes, which are critical for biologically induced SAR, are also required for the DA-induced SAR, which is further enhanced by azelaic acid, a defense priming molecule. In response to the biological induction of SAR, DA in vascular sap is redistributed into a SAR-inducing 'signaling DA' pool that is associated with a trypsin-sensitive high molecular weight fraction, a finding that suggests that DA-orchestrated SAR involves a vascular sap protein(s).


Assuntos
Abietanos/imunologia , Arabidopsis/imunologia , Resistência à Doença , Abietanos/química , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ligação a Ácido Graxo , Regulação da Expressão Gênica de Plantas , Exsudatos de Plantas/química , Exsudatos de Plantas/imunologia , Transdução de Sinais
9.
Mol Plant Microbe Interact ; 25(3): 431-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22112217

RESUMO

Fusarium head blight (FHB) is a destructive disease of cereal crops such as wheat and barley. Previously, expression in wheat of the Arabidopsis NPR1 gene (AtNPR1), which encodes a key regulator of salicylic acid (SA) signaling, was shown to reduce severity of FHB caused by Fusarium graminearum. It was hypothesized that SA signaling contributes to wheat defense against F. graminearum. Here, we show that increased accumulation of SA in fungus-infected spikes correlated with elevated expression of the SA-inducible pathogenesis-related 1 (PR1) gene and FHB resistance. In addition, FHB severity and mycotoxin accumulation were curtailed in wheat plants treated with SA and in AtNPR1 wheat, which is hyper-responsive to SA. In support of a critical role for SA in basal resistance to FHB, disease severity was higher in wheat expressing the NahG-encoded salicylate hydroxylase, which metabolizes SA. The FHB-promoting effect of NahG was overcome by application of benzo (1,2,3), thiadiazole-7 carbothioic acid S-methyl ester, a synthetic functional analog of SA, thus confirming an important role for SA signaling in basal resistance to FHB. We further demonstrate that jasmonate signaling has a dichotomous role in wheat interaction with F. graminearum, constraining activation of SA signaling during early stages of infection and promoting resistance during the later stages of infection.


Assuntos
Proteínas de Arabidopsis/genética , Fusarium/patogenicidade , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/farmacologia , Ácido Salicílico/metabolismo , Triticum/imunologia , Arabidopsis/genética , Ciclopentanos/farmacologia , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Imunidade Vegetal/genética , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , RNA de Plantas/genética , Ácido Salicílico/análise , Ácido Salicílico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Triticum/efeitos dos fármacos , Triticum/genética , Triticum/microbiologia
10.
Front Plant Sci ; 13: 928949, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845691

RESUMO

Wheat streak mosaic virus (WSMV) is an economically important viral pathogen that threatens global wheat production, particularly in the Great Plains of the United States. The Wsm2 locus confers resistance to WSMV and has been widely deployed in common wheat varieties adapted to this region. Characterizing the underlying causative genetic variant would contribute to our understanding of viral resistance mechanisms in wheat and aid the development of perfect markers for breeding. In this study, linkage mapping in a doubled-haploid (DH) mapping population confirmed Wsm2 as a major locus conferring WSMV resistance in wheat. The Wsm2 flanking markers were mapped to a 4.0 Mbp region at the distal end of chromosome 3BS containing 142 candidate genes. Eight haplotypes were identified from seventeen wheat genotypes collected from different agroecological zones, indicating that Wsm2 lies in a dynamic region of the genome with extensive structural variation and that it is likely a rare allele in most available genome assemblies of common wheat varieties. Exome sequencing of the variety "Snowmass", which carries Wsm2, revealed several loss-of-function mutations and copy number variants in the 142 candidate genes within the Wsm2 interval. Six of these genes are differentially expressed in "Snowmass" compared to "Antero," a variety lacking Wsm2, including a gene that encodes a nucleotide-binding site leucine-rich repeat (NBS-LRR) type protein with homology to RPM1. A de novo assembly of unmapped RNA-seq reads identified nine transcripts expressed only in "Snowmass," three of which are also induced in response to WSMV inoculation. This study sheds light on the variation underlying Wsm2 and provides a list of candidate genes for subsequent validation.

11.
PLoS One ; 17(2): e0263496, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35143550

RESUMO

Pangenome analyses are increasingly being utilized to study the evolution of eukaryotic organisms. While pangenomes can provide insight into polymorphic gene content, inferences about the ecological and adaptive potential of such organisms also need to be accompanied by additional supportive genomic analyses. In this study we constructed a pangenome of Claviceps purpurea from 24 genomes and examined the positive selection and recombination landscape of an economically important fungal organism for pharmacology and agricultural research. Together, these analyses revealed that C. purpurea has a relatively large accessory genome (~ 38%), high recombination rates (ρ = 0.044), and transposon mediated gene duplication. However, due to observations of relatively low transposable element (TE) content (8.8%) and a lack of variability in genome sizes, prolific TE expansion may be controlled by frequent recombination. We additionally identified that within the ergoline biosynthetic cluster the lpsA1 and lpsA2 were the result of a recombination event. However, the high recombination rates observed in C. purpurea may be influencing an overall trend of purifying selection across the genome. These results showcase the use of selection and recombination landscapes to identify mechanisms contributing to pangenome structure and primary factors influencing the evolution of an organism.


Assuntos
Claviceps/genética , Genoma Fúngico , Recombinação Genética , Elementos de DNA Transponíveis , Especificidade de Hospedeiro , Polimorfismo de Nucleotídeo Único , Seleção Genética
12.
Environ Entomol ; 51(2): 322-331, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35243512

RESUMO

Aphids are the most prolific vectors of plant viruses resulting in significant yield losses to crops worldwide. Potato virus Y (PVY) is transmitted in a non-persistent manner by 65 species of aphids. With the increasing acreage of hemp (Cannabis sativa L.) (Rosales: Cannabaceae) in the United States, we were interested to know if the cannabis aphid (Phorodon cannabis Passerini) (Hemiptera: Aphididae) is a potential vector of PVY. Here, we conduct transmission assays and utilize the electrical penetration graph (EPG) technique to determine whether cannabis aphids can transmit PVY to hemp (host) and potato (non-host) (Solanum tuberosum L.) (Solanales: Solanaceace). We show for the first time that the cannabis aphid is an efficient vector of PVY to both hemp (96% transmission rate) and potato (91%) using cohorts of aphids. In contrast, individual aphids transmitted the virus more efficiently to hemp (63%) compared to potato (19%). During the initial 15 min of EPG recordings, aphids demonstrated lower number and time spent performing intracellular punctures on potato compared to hemp, which may in part explain low virus transmission to potato using individual aphids. During the entire 8-hour recording, viruliferous aphids spent less time ingesting phloem compared to non-viruliferous aphids on hemp. This reduced host acceptance could potentially cause viruliferous aphids to disperse thereby increasing virus transmission. Overall, our study shows that cannabis aphid is an efficient vector of PVY, and that virus infection and host plant suitability affect feeding behaviors of the cannabis aphid in ways which may increase virus transmission.


Assuntos
Afídeos , Cannabis , Potyvirus , Solanum tuberosum , Viroses , Animais , Comportamento Alimentar , Doenças das Plantas
13.
Insect Sci ; 28(2): 521-532, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32240579

RESUMO

Diurnal variation in phloem sap composition has a strong influence on aphid performance. The sugar-rich phloem sap serves as the sole diet for aphids and a suite of physiological mechanisms and behaviors allow them to tolerate the high osmotic stress. Here, we tested the hypothesis that night-time feeding by aphids is a behavior that takes advantage of the low sugar diet in the night to compensate for osmotic stress incurred while feeding on high sugar diet during the day. Using the electrical penetration graph (EPG) technique, we examined the effects of diurnal rhythm on feeding behaviors of bird cherry-oat aphid (Rhopalosiphum padi L.) on wheat. A strong diurnal rhythm in aphids as indicated by the presence of a cyclical pattern of expression in a core clock gene did not impact aphid feeding and similar feeding behaviors were observed during day and night. The major difference observed between day and night feeding was that aphids spent significantly longer time in phloem salivation during the night compared to the day. In contrast, aphid hydration was reduced at the end of the day-time feeding compared to end of the night-time feeding. Gene expression analysis of R. padi osmoregulatory genes indicated that sugar breakdown and water transport into the aphid gut was reduced at night. These data suggest that while diurnal variation occurs in phloem sap composition, aphids use night-time feeding to overcome the high osmotic stress incurred while feeding on sugar-rich phloem sap during the day.


Assuntos
Afídeos/fisiologia , Herbivoria , Osmorregulação , Animais , Ritmo Circadiano , Dieta , Triticum/crescimento & desenvolvimento
14.
Genome Biol Evol ; 13(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33512490

RESUMO

The genus Claviceps has been known for centuries as an economically important fungal genus for pharmacology and agricultural research. Only recently have researchers begun to unravel the evolutionary history of the genus, with origins in South America and classification of four distinct sections through ecological, morphological, and metabolic features (Claviceps sects. Citrinae, Paspalorum, Pusillae, and Claviceps). The first three sections are additionally characterized by narrow host range, whereas section Claviceps is considered evolutionarily more successful and adaptable as it has the largest host range and biogeographical distribution. However, the reasons for this success and adaptability remain unclear. Our study elucidates factors influencing adaptability by sequencing and annotating 50 Claviceps genomes, representing 21 species, for a comprehensive comparison of genome architecture and plasticity in relation to host range potential. Our results show the trajectory from specialized genomes (sects. Citrinae and Paspalorum) toward adaptive genomes (sects. Pusillae and Claviceps) through colocalization of transposable elements around predicted effectors and a putative loss of repeat-induced point mutation resulting in unconstrained tandem gene duplication coinciding with increased host range potential and speciation. Alterations of genomic architecture and plasticity can substantially influence and shape the evolutionary trajectory of fungal pathogens and their adaptability. Furthermore, our study provides a large increase in available genomic resources to propel future studies of Claviceps in pharmacology and agricultural research, as well as, research into deeper understanding of the evolution of adaptable plant pathogens.


Assuntos
Claviceps/genética , Evolução Molecular , Genoma Fúngico , Claviceps/classificação , Genes Fúngicos , Genômica , Especificidade de Hospedeiro , Sequências Repetitivas Dispersas , Anotação de Sequência Molecular , Filogenia
15.
PLoS One ; 16(2): e0245380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539358

RESUMO

Aphid feeding behavior and performance on a given host plant are influenced by the plants' physical and chemical traits, including structural characters such as trichomes and nutritional composition. In this study, we determined the feeding behavior and performance of soybean aphids (Aphis glycines) on the stem, the adaxial (upper), and the abaxial (lower) leaf surfaces during early vegetative growth of soybean plants. Using the electrical penetration graph technique, we found that aphids feeding on the stem took the longest time to begin probing. Once aphids began probing, the sieve elements were more conducive to feeding, as evidenced by less salivation on the stem than either leaf surface. In whole-plant assays, stems harbored higher aphid populations, and aphids had shorter development time on stems than the adaxial and the abaxial leaf surfaces. We compared trichome density and length on the stem, the adaxial, and the abaxial leaf surfaces to investigate whether plant trichomes affected aphid feeding and performance. There were higher density and longer trichomes on stems, which likely resulted in aphids taking a longer time to probe. Still a negative impact on aphid population growth was not observed. Analysis of phloem sap composition revealed that vascular sap-enriched exudates from stems had higher sugars and amino acids than exudates from leaves. In artificial diet feeding assays, the population of aphids reared on a diet supplemented with stem exudates was higher than on a diet supplemented with leaf petiole exudates which is in agreement with results of the whole-plant assays. In summary, our findings suggest that the performance of soybean aphids on a specific plant location is primarily driven by accessibility and the quality of phloem composition rather than structural traits.


Assuntos
Afídeos/crescimento & desenvolvimento , Comportamento Alimentar/fisiologia , Glycine max/metabolismo , Nutrientes , Floema/metabolismo , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Tricomas/metabolismo , Aminoácidos/metabolismo , Animais , Floema/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Açúcares/metabolismo , Tricomas/crescimento & desenvolvimento
16.
Ecol Evol ; 11(21): 14775-14788, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765140

RESUMO

Ash (Fraxinus spp.) is one of the most widely distributed tree genera in North America. Populations of ash in the United States and Canada have been decimated by the introduced pest Agrilus planipennis (Coleoptera: Buprestidae; emerald ash borer), having negative impacts on both forest ecosystems and economic interests. The majority of trees succumb to attack by A. planipennis, but some trees have been found to be tolerant to infestation despite years of exposure. Restriction site-associated DNA (RAD) sequencing was used to sequence ash individuals, both tolerant and susceptible to A. planipennis attack, in order to identify single nucleotide polymorphism (SNP) patterns related to tolerance and health declines. de novo SNPs were called using SAMtools and, after filtering criteria were implemented, a set of 17,807 SNPs were generated. Principal component analysis (PCA) of SNPs aligned individual trees into clusters related to geography; however, five tolerant trees clustered together despite geographic location. A subset of 32 outlier SNPs identified within this group, as well as a subset of 17 SNPs identified based on vigor rating, are potential candidates for the selection of host tolerance. Understanding the mechanisms of host tolerance through genome-wide association has the potential to restore populations with cultivars that are able to withstand A. planipennis infestation. This study was successful in using RAD-sequencing in order to identify SNPs that could contribute to tolerance of A. planipennis. This was a first step toward uncovering the genetic basis for host tolerance to A. planipennis. Future studies are needed to identify the functionality of the loci where these SNPs occur and how they may be related to tolerance of A. planipennis attack.

17.
Front Plant Sci ; 12: 689986, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335657

RESUMO

The soybean aphid (Aphis glycines) continues to threaten soybean production in the United States. A suite of management strategies, such as planting aphid-resistant cultivars, has been successful in controlling soybean aphids. Several Rag genes (resistance against A. glycines) have been identified, and two are currently being deployed in commercial soybean cultivars. However, the mechanisms underlying Rag-mediated resistance are yet to be identified. In this study, we sought to determine the nature of resistance conferred by the Rag5 gene using behavioral, molecular biology, physiological, and biochemical approaches. We confirmed previous findings that plants carrying the Rag5 gene were resistant to soybean aphids in whole plant assays, and this resistance was absent in detached leaf assays. Analysis of aphid feeding behaviors using the electrical penetration graph technique on whole plants and detached leaves did not reveal differences between the Rag5 plants and Williams 82, a susceptible cultivar. In reciprocal grafting experiments, aphid populations were lower in the Rag5/rag5 (Scion/Root stock) chimera, suggesting that Rag5-mediated resistance is derived from the shoots. Further evidence for the role of stems comes from poor aphid performance in detached stem plus leaf assays. Gene expression analysis revealed that biosynthesis of the isoflavone kaempferol is upregulated in both leaves and stems in resistant Rag5 plants. Moreover, supplementing with kaempferol restored resistance in detached stems of plants carrying Rag5. This study demonstrates for the first time that Rag5-mediated resistance against soybean aphids is likely derived from stems.

18.
Mol Plant Microbe Interact ; 23(7): 861-70, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20521949

RESUMO

Fusarium graminearum is the principal causative agent of Fusarium head blight (FHB), a devastating disease of wheat and barley. This fungus can also colonize Arabidopsis thaliana. Disease resistance was enhanced in transgenic wheat and Arabidopsis plants that constitutively overexpress the NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) gene, which regulates salicylic acid (SA) signaling and modulates the activation of jasmonic acid (JA)-dependent defenses. Here, we provide several lines of evidence that reveal an important role for SA and JA signaling in Arabidopsis defense against F. graminearum. SA level was elevated in fungus-inoculated leaves, and SA application and biologically activated systemic acquired resistance enhanced resistance. Furthermore, the disruption of SA accumulation and signaling in the sid2 mutant and NahG transgenic plant, and the npr1 and wrky18 mutants, respectively, resulted in heightened susceptibility to this fungus in leaves and inflorescence. JA signaling was activated in parallel with SA signaling in the fungus-challenged plants. However, the hyperresistance of the JA pathway mutants opr3, coi1, and jar1 indicates that this pathway contributes to susceptibility. Genetic and biochemical experiments indicate that the JA pathway promotes disease by attenuating the activation of SA signaling in fungus-inoculated plants. However, the hypersusceptibility of the jar1 npr1 double mutant compared with the npr1 mutant suggests that JAR1 also contributes to defense, signifying a dichotomous role of JA and a JAR1-dependent mechanism in this interaction.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Ciclopentanos/metabolismo , Fusarium/fisiologia , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Genótipo , Interações Hospedeiro-Patógeno , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Transdução de Sinais
19.
Plant Sci ; 279: 96-107, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30709498

RESUMO

Aphids are amongst the most damaging pests of plants that use their stylets to penetrate the plant tissue to consume large amounts of phloem sap and thus deprive the plant of photoassimilates. In addition, some aphids vector important viral diseases of plants. Plant defenses targeting aphids are broadly classified as antibiosis, which interferes with aphid growth, survival and fecundity, and antixenosis, which influences aphid behavior, including plant choice and feeding from the sieve elements. Here we review the multitude of steps in the infestation process where these defenses can be exerted and highlight the progress made on identifying molecular factors and mechanisms that contribute to host defense, including plant resistance genes and signaling components, as well as aphid-derived effectors that elicit or attenuate host defenses. Also discussed is the impact of aphid-vectored plant viruses on plant-aphid interaction and the concept of tolerance, which allows plant to withstand or recover from damage resulting from the infestation.


Assuntos
Afídeos , Doenças das Plantas/parasitologia , Imunidade Vegetal , Animais , Afídeos/fisiologia , Interações Hospedeiro-Parasita , Doenças das Plantas/imunologia
20.
Front Microbiol ; 10: 431, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941106

RESUMO

Soybean vein necrosis virus (SVNV) is a newly discovered species of tospovirus infecting soybean plants that is transmitted by the primary vector, soybean thrips (Neohydatothrips variabilis), and two additional secondary vectors, tobacco thrips (Frankliniella fusca) and eastern flower thrips (F. tritici). This study was undertaken to elucidate the association between virus acquisition [6, 12, 24, and 48 h acquisition access period (AAP)] and transmission efficiency [12, 24, and 48 h inoculation access period (IAP)] in the primary vector, N. variabilis, and to examine the mechanisms of vector competence by analyzing the effect of AAP (6, 12, and 24 h) on virus infection in various tissues. In addition, we examined virus infection in tissues of the two secondary vectors. We found a significant effect of virus acquisition on transmission efficiency, transmission rate post 6 and 48 h AAP was significantly lower than 12 and 24 h AAP. Our analysis did not reveal a correlation between virus transmission rate and virus RNA in corresponding N. variabilis adults. On the contrary, N. variabilis adults harboring higher accumulation of the virus (>104) resulted in lower transmission rates. Analysis of SVNV infection in the tissues revealed the presence of the virus in the foregut, midgut (region 1, 2, and 3), tubular salivary glands and principal salivary glands (PSG) of adults of all three vector species, however, the frequency of infected tissues was highest in N. variabilis followed by F. fusca and F. tritici. The frequency of SVNV infection in individual tissues specifically the salivary glands was lowest after 6 h AAP compared to 12 and 24 h AAP. This finding is in agreement with the transmission assays, where significantly lower virus transmission rate was observed post 6 h AAP. In addition, N. variabilis adults with high PSG infection (12 and 24 h AAP) were likely to have high percentage of foregut and midgut region 2 infection. Overall, results from the transmission assays and immunolabeling experiments suggest that shorter AAP results in reduced virus infection in the various tissues especially PSG, which are important determinants of vector competence in SVNV-thrips interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA