Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genetica ; 150(2): 97-115, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35396627

RESUMO

Molecular mechanisms of the non-structural protein 1 (NS1) in influenza A-induced pathological changes remain ambiguous. This study explored the pathogenesis of human infection by influenza A viruses (IAVs) through identifying human genes with codon usage bias (CUB) similar to NS1 gene of these viruses based on the relative synonymous codon usage (RSCU). CUB of the IAV subtypes H1N1, H3N2, H3N8, H5N1, H5N2, H5N8, H7N9 and H9N2 was analyzed and the correlation of RSCU values of NS1 sequences with those of the human genes was calculated. The CUB of NS1 was uneven and codons ending with A/U were preferred. The ENC-GC3 and neutrality plots suggested natural selection as the main determinant for CUB. The RCDI, CAI and SiD values showed that the viruses had a high degree of adaptability to human. A total of 2155 human genes showed significant RSCU-based correlation (p < 0.05 and r > 0.5) with NS1 coding sequences and was considered as human genes with CUB similar to NS1 gene of IAV subtypes. Differences and similarities in the subtype-specific human protein-protein interaction (PPI) networks and their functions were recorded among IAVs subtypes, indicating that NS1 of each IAV subtype has a specific pathogenic mechanism. Processes and pathways involved in influenza, transcription, immune response and cell cycle were enriched in human gene sets retrieved based on the CUB of NS1 gene of IAV subtypes. The present work may advance our understanding on the mechanism of NS1 in human infections of IAV subtypes and shed light on the therapeutic options.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N8 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N2 , Subtipo H7N9 do Vírus da Influenza A , Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Infecções por Orthomyxoviridae , Uso do Códon , Interações Hospedeiro-Patógeno/genética , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Vírus da Influenza A Subtipo H3N8/genética , Vírus da Influenza A Subtipo H3N8/metabolismo , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/metabolismo , Vírus da Influenza A Subtipo H5N2/genética , Vírus da Influenza A Subtipo H5N2/metabolismo , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/metabolismo , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/metabolismo , Influenza Humana/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
2.
J Ind Microbiol Biotechnol ; 41(1): 143-52, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24174216

RESUMO

Ansamitocin P-3 (AP-3), a secondary metabolite produced by Actinosynnema pretiosum, is well known for its extraordinary antitumor properties and is broadly utilized in clinical research. Through this work, we found, for the first time, that the combination of glucose and glycerol as a mixed carbon source is an appropriate approach for enhancing the production of AP-3 by A. pretiosum. The amount yielded was about threefold that obtained with glucose as the sole carbon source. In order to better understand the mechanisms that channel glycerol metabolism towards AP-3 production, the activities of some key enzymes such as glucose-6-phosphate dehydrogenase, glucose-6-phosphate isomerase, phosphoglucomutase (PGM), and fructose 1,6-bisphosphatase were assessed. The results showed that glycerol affects the production of AP-3 by increasing PGM activity. Furthermore, qRT-PCR analysis revealed that transcriptional levels of structural genes asm14 and asm24, and primary genes amir5189 and amir6327 were up-regulated in medium containing glycerol.


Assuntos
Actinomycetales/metabolismo , Glucose/metabolismo , Glicerol/metabolismo , Maitansina/análogos & derivados , Actinomycetales/enzimologia , Actinomycetales/genética , Carbono/metabolismo , Maitansina/biossíntese , Maitansina/química , Transcrição Gênica
3.
Biotechnol Lett ; 35(12): 2137-45, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24062132

RESUMO

Genetic manipulation was undertaken in order to understand the mechanism involved in the heterologous synthesis of lycopene in Escherichia coli. Knockout of the central carbon metabolic gene zwf (glucose-6-phosphate dehydrogenase) resulted in the enhancement of lycopene production (above 130 % relative to control). The amplification and overexpression of rate-limiting steps encoded by idi (isopentenyl diphosphate isomerase), dxs (1-deoxyxylulose-5-phosphate synthase) and ispDF (4-diphosphocytidyl-2C-methyl-D-erythritol synthase and 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase) genes improved lycopene synthesis from 0.89 to 5.39 mg g(-1) DCW. The combination of central metabolic genes knockout with the amplification of MEP pathway genes yielded best amounts of lycopene (6.85-7.55 mg g(-1) DCW). Transcript profiling revealed that idi and dxs were up-regulated in the zwf knock-out strain, providing a plausible explanation for the increase in lycopene yield observed in this strain. An increase in precursor availability might also have contributed to the improved lycopene production.


Assuntos
Carotenoides/metabolismo , Escherichia coli/genética , Genes Bacterianos/genética , Glucosefosfato Desidrogenase/genética , Engenharia Metabólica/métodos , Análise de Variância , Carotenoides/análise , Carotenoides/genética , Escherichia coli/metabolismo , Técnicas de Inativação de Genes , Licopeno , Redes e Vias Metabólicas/genética , Plasmídeos
4.
Infect Genet Evol ; 89: 104723, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33444859

RESUMO

Malaria is a fatal parasitic disease with unelucidated pathogenetic mechanism. Herein, we aimed to uncover genes associated with different clinical aspects of malaria based on the GSE1124 dataset that is publicly accessible by using WGCNA. We obtained 16 co-expression modules and their correlations with clinical features. Using the MCODE tool, we identified THEM4, STYX, VPS36, LCOR, KIAA1143, EEA1, RAPGEF6, LOC439994, ZBTB33, PTPN22, ESCO1, and KLF3 as hub genes positively associated with Plasmodium falciparum infection (ASPF). These hub genes were involved in the biological processes of endosomal transport, regulation of natural killer cell proliferation, and KEGG pathways of endocytosis and fatty acid elongation. For the purple module negatively correlated with ASPF, we identified 19 hub genes that were involved in the biological processes of positive regulation of cellular protein catabolic process and KEGG pathways of other glycan degradation. For the salmon module positively correlated with severe malaria anemia (SMA), we identified 17 hub genes that were among those driving the biological processes of positive regulation of erythrocyte differentiation. For the brown module positively correlated with cerebral malaria (CM), we identified eight hub genes and these genes participated in phagolysosome assembly and positive regulation of exosomal secretion, and animal mitophagy pathway. For the tan module negatively correlated with CM, we identified four hub genes that were involved in CD8-positive, alpha-beta T cell differentiation and notching signaling pathway. These findings may provide new insights into the pathogenesis of malaria and help define new diagnostic and therapeutic approaches for malaria patients.


Assuntos
Antimaláricos/uso terapêutico , Biologia Computacional/métodos , Regulação da Expressão Gênica , Malária Falciparum/tratamento farmacológico , Malária Falciparum/genética , Criança , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos
5.
Infect Genet Evol ; 85: 104471, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32707288

RESUMO

Coronavirus disease 2019 (COVID-19) has caused thousands of deaths worldwide and has become an urgent public health concern. The extraordinary interhuman transmission of this disease has urged scientists to examine the various facets of its pathogenic agent, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, based on publicly available genomic data, we analyzed the codon usage co-adaptation profiles of SARS-CoV-2 and other respiratory coronaviruses (CoVs) with their human host, identified CoV-responsive human genes and their functional roles on the basis of both the relative synonymous codon usage (RSCU)-based correlation of viral genes with human genes and differential gene expression analysis, and predicted potential drugs for COVID-19 treatment based on these genes. The relatively high codon adaptation index (CAI) values (>0.70) signposted the gene expressivity efficiency of CoVs in human. The ENc-GC3 plot indicated that SARS-CoV-2 genome was under strict selection pressure while SARS-CoV and MERS-CoV were under selection and mutational pressures. The RSCU-based correlation analysis indicated that the viral genomes shared similar codons with a panoply of human genes. The merging of RSCU-based correlation data and SARS-CoV-2-responsive differentially expressed genes allowed the identification of human genes potentially affected by SARS-CoV-2 infection. Functional enrichment analysis indicated that these genes were enriched in biological processes and pathways related to host response to viral infection and immune response. Using the drug-gene interaction database, we screened a list of drugs that could target these genes as potential COVID-19 therapeutics. Our findings not only will contribute in vaccine development but also provide a useful set of drugs that could guide practitioners in strategical monitoring of COVID-19. We recommend practitioners to scrupulously screen this list of predicted drugs in order to authenticate those qualified for treating COVID-19 symptoms.


Assuntos
Biologia Computacional/métodos , Coronavirus/genética , SARS-CoV-2/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Composição de Bases , Uso do Códon , Coronavirus/classificação , Coronavirus/efeitos dos fármacos , Bases de Dados Genéticas , Avaliação Pré-Clínica de Medicamentos , Humanos , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/efeitos dos fármacos , Análise de Sequência de RNA
6.
Bioresour Technol ; 216: 1040-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27347651

RESUMO

Herein, we studied the heterologous production of α-farnesene, a valuable sesquiterpene with various biotechnological applications, by metabolic engineering of Yarrowia lipolytica. Different overexpression vectors harboring combinations of tHMG1, IDI, ERG20 and codon-optimized α-farnesene synthase (OptFS) genes were constructed and integrated into the genome of Y. lipolytica Po1h. The engineered strain produced 57.08±1.43mg/L of α-farnesene corresponding to 20.8-fold increase over the initial production of 2.75±0.29mg/L in the YPD medium in shake flasks. Bioreactor scale-up in PM medium led to α-farnesene concentration of 259.98±2.15mg/L with α-farnesene to biomass ratio of 33.98±1.51mg/g, which was a 94.5-fold increase over the initial production. This first report on α-farnesene synthesis in Y. lipolytica lays a foundation for future research on production of sesquitepenes in Y. lipolytica and other closest yeast species and will potentially contribute in its industrial production.


Assuntos
Reatores Biológicos/microbiologia , Engenharia Metabólica/métodos , Sesquiterpenos , Yarrowia , Sesquiterpenos/análise , Sesquiterpenos/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
7.
Metabolites ; 5(4): 794-813, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26703753

RESUMO

Genome-scale metabolic models embody a significant advantage of systems biology since their applications as metabolic flux simulation models enable predictions for the production of industrially-interesting metabolites. The biotechnological production of lycopene from Yarrowia lipolytica is an emerging scope that has not been fully scrutinized, especially for what concerns cultivation conditions of newly generated engineered strains. In this study, by combining flux balance analysis (FBA) and Plackett-Burman design, we screened chemicals for lycopene production from a metabolically engineered strain of Y. lipolytica. Lycopene concentrations of 126 and 242 mg/L were achieved correspondingly from the FBA-independent and the FBA-assisted designed media in fed-batch cultivation mode. Transcriptional studies revealed upregulations of heterologous genes in media designed according to FBA, thus implying the efficiency of model predictions. Our study will potentially support upgraded lycopene and other terpenoids production from existing or prospect bioengineered strains of Y. lipolytica and/or closely related yeast species.

8.
J Biotechnol ; 206: 42-51, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-25912211

RESUMO

Yarrowia lipolytica, a model microorganism of oleaginous yeasts with developed sophisticated genetic tools, is able to metabolize a wide range of substrates and accumulate large amounts of lipids. However, there is a lack of literature reporting the metabolic characteristics of Y. lipolytica metabolizing these substrates in a systematic view. In this study, Y. lipolytica was cultivated on a variety of carbon sources, among which cell growth and production characteristics on two representative substrates (glucose and oleic acid) were investigated in detail at metabolomic level. Metabolic pathway abundance was computed to interpret the metabolome data in a straightforward way. The results showed that most pathway abundances decreased in the shift from growth to production phase. Specifically, when cultivated on glucose, abundances of twelve pathways decreased markedly between the growth and lipid production phases, while thirteen pathways reduced and only three pathways increased significantly in abundances on oleic acid. In comparison, for the same cultivation phase only a few pathways exhibited significant changes between glucose-grown and oleic acid-grown cells. This study revealed that the pathway abundance could be used to effectively show the activity changes of pathways, providing a new perspective to employ metabolomics data for understanding cell metabolism and enhancing the production of target metabolites.


Assuntos
Reatores Biológicos/microbiologia , Carbono/metabolismo , Metaboloma/fisiologia , Metabolômica/métodos , Yarrowia/metabolismo , Algoritmos , Meios de Cultura/química , Meios de Cultura/metabolismo , Glucose/metabolismo , Redes e Vias Metabólicas , Ácido Oleico/metabolismo
9.
Appl Biochem Biotechnol ; 175(6): 2845-56, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25564203

RESUMO

Ansamitocin P-3 (AP-3) is an active and potent anti-tumor maytansinoid, which is usually produced by Actinosynnema spp. In this study, the effects of different carbon sources on biomass and AP-3 production by Actinosynnema mirum were investigated. The results showed great biomass production behavior of A. mirum in glucose medium comparatively to other carbon sources. Interestingly, when fructose was used as the sole carbon source, the highest yield of AP-3 was obtained, which was about fourfold than that of strain cultured in glucose after 168 h. Further analysis conducted in regard to better understanding of such observations in glucose and fructose defined media showed that fructose improves AP-3 production through the stimulation of the key genes of the secondary metabolism pathways. It was concluded that fructose could be a potential carbon source for cost-effective production of AP-3 from an industrial point of view.


Assuntos
Actinomycetales/metabolismo , Frutose/metabolismo , Maitansina/análogos & derivados , Meios de Cultura/metabolismo , Fermentação , Glucose/metabolismo , Maitansina/biossíntese
10.
Bioresour Technol ; 173: 324-333, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25310869

RESUMO

In this study, the culture medium components screening and filtering were undertaken in order to set up efficient and cost effective minimal culture media for lipid production from Yarrowia lipolytica DSM3286. The basal minimal culture medium (S2) designed yielded lipid content up to 35% of the microbial dry cell weight. A set of fermentation strategies based on this minimal medium was developed and the lipid content was raised to 51%. The scale-up under different fermentation conditions based on S2 medium led to a maximum lipid content of 65%. The produced microbial oils displayed interesting properties to be used as a feedstock for high quality biodiesel production. The minimal media and operable cultivation strategies devised in this study, in association with the works done so far by other authors, could enable fast, massive, viable and more economical production of single cell oils and smooth biodiesel manufacture.


Assuntos
Biocombustíveis , Lipídeos/biossíntese , Yarrowia/metabolismo , Biomassa , Reatores Biológicos , Conservação de Recursos Energéticos , Meios de Cultura , Fermentação , Cromatografia Gasosa-Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA