Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Metab Brain Dis ; 38(7): 2243-2254, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37490224

RESUMO

OBJECTIVE: Ferulic acid (FA) is a common food ingredient that is abundantly present in various routinely consumed food and beverages. Like many cinnamic acid derivatives, FA produces wide-ranging effects in a dose-dependent manner and various studies link FA consumption with reduced risk of depressive disorders. The aim of this study was to exploit the neuroprotective mechanisms of FA including indoleamine 2,3-dioxygenase (IDO), brain-derived neurotrophic factor (BDNF), and other pro-inflammatory cytokines by employing lipopolysaccharide (LPS)-induced depressive-like behaviour model. METHODS: C57BL/6J male mice were divided into 4 groups consisting of saline (SAL), LPS, FA and Imipramine (IMI). Animals were pretreated orally with FA (10 mg/kg) and IMI (10 mg/kg) for 21 days once daily and all groups except SAL were challenged with LPS (0.83 mg/kg) intraperitoneally on day 21. RESULTS: LPS administration produced a biphasic change in the behaviour of the animals where the animals lost a significant weight and express high immobility time at 24 h. Proinflammatory cytokines including, TNF-α, IL-6, IL-1ß, and IFN-γ were significantly increased along with increased lipid peroxidation and reduced BDNF. Furthermore, the increased kynurenine to tryptophan ratio was indicative of elevated IDO activity. CONCLUSION: The results of this study emphasise that low dose of FA is effective in attenuating depressive-like behaviour by modulating IDO, BDNF and reducing neuroinflammation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Depressão , Animais , Camundongos , Masculino , Depressão/tratamento farmacológico , Depressão/induzido quimicamente , Lipopolissacarídeos/toxicidade , Indolamina-Pirrol 2,3,-Dioxigenase , Camundongos Endogâmicos C57BL , Citocinas , Imipramina
2.
Scand J Immunol ; 95(2): e13124, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34861056

RESUMO

Cells encounter continuous challenges due to tissue insult caused by endogenous and/or exogenous stimuli. Among the mechanisms set in place to counterbalance the tissue insult, innate immunity is always at the forefront. Cells of innate immunity efficiently recognize the 'danger signals' via a specialized set of membrane-bound receptors known as Toll-like receptors. Once this interaction is established, toll-like receptor passes on the responsibility to cytosolic NOD-like receptors through a cascade of signalling pathways. Subsequently, NOD-like receptors assemble to a specialized multiprotein intracellular complex, that is inflammasome. Inflammasome activates Caspase-1 and Gasdermin-D which initiate pyroptotic cell death in the affected tissue by two simultaneous mechanisms. Being a protease, caspase-1 cleaves and activates pro-inflammatory cytokines IL-1ß and IL-18. On the other hand, Gasdermin-D causes proteolytic cleavage which forms a pore in the cell membrane. This review highlights the molecular events ranging from recognition of stimuli to pyroptosis. The review is also an attempt to discuss the mechanisms of the most specific experimental NLRP3 inhibitors.


Assuntos
Membrana Celular/metabolismo , Imunidade Inata/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/imunologia , Receptores Toll-Like/metabolismo , Alarminas/metabolismo , Caspase 1/imunologia , Inibidores Enzimáticos/farmacologia , Humanos , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Moléculas com Motivos Associados a Patógenos/metabolismo , Proteínas de Ligação a Fosfato/imunologia , Transdução de Sinais/imunologia
3.
Nutr Neurosci ; 25(9): 1836-1844, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33814004

RESUMO

Objective: Caffeine (CAF) is one of the most commonly consumed nutritional stimulant in beverages. Interestingly, CAF produces varied effects in a dose-dependent manner, and that makes it one of the most controversial nutritional ingredients. Various studies have linked CAF consumption and reduced risk of depressive disorders. The aim of this study was to investigate the effect of CAF on lipopolysaccharide (LPS)-induced neuroinflammation and depressive-like behaviour.Methods: C57BL/6J male mice were divided into four groups consisting of saline (SAL), LPS, CAF and Imipramine (IMI). Animals were pretreated orally with CAF (10 mg/kg) and IMI (10 mg/kg) for 14 days once daily and all groups except SAL were challenged with LPS (0.83 mg/kg) intraperitoneally on day 14.Results: LPS produced a biphasic behavioural response with a significantly high immobility time and weight loss after 24 h. The brain cytokines (TNF-α, IL-6, IL-1ß, and IFN-γ) levels were remarkably high, along with increased lipid peroxidation and reduced Brain Derived Neurotrophic Factor (BDNF). These biochemical and behavioural changes were significantly alleviated by CAF and IMI chronic treatment.Conclusion: The results of this study implicate that mild-moderate consumption of CAF could impart anti-inflammatory properties under neuroinflammatory conditions by modulating the cytokine and neurotrophic mechanisms.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Cafeína , Depressão , Doenças Neuroinflamatórias , Animais , Anti-Inflamatórios/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cafeína/farmacologia , Citocinas/metabolismo , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Imipramina/farmacologia , Interleucina-6/metabolismo , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/tratamento farmacológico , Estresse Oxidativo , Fator de Necrose Tumoral alfa/metabolismo
4.
Mol Divers ; 26(1): 443-466, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34331670

RESUMO

Neuroinflammation is one of the detrimental factors leading to neurodegeneration in Alzheimer's disease (AD) and other neurodegenerative disorders. The activation of microglial neurokinin 1 receptor (NK1R) by substance P (SP) enhances neuroinflammation which is mediated through pro-inflammatory pathways involving NFkB, ERK1/2, and P38 and thus projects the scope and importance of NK1R inhibitors. Emphasizing the inhibitory role of N Acetyl L Tryptophan (L-NAT) on NK1R, this is the first in silico screening of L-NAT mediated NK1R antagonism. In addition, FDA- approved ligands were screened for their potential NK1R antagonism. The L-NAT was docked in XP (Extra Precision) mode while FDA-approved ligands were screened in HTVS (High Throughput Virtual Screening), SP (Standard Precision), and XP mode onto NK1R (PDB:6HLO). The L-NAT and top 3 compounds FDA-approved ligands were subjected to molecular dynamics (MD) studies of 100 ns simulation time. The XP docking of L-NAT, indacaterol, modafinil and alosetron showed good docking scores. Their 100 ns MD showed brief protein-ligand interactions with an acceptable root mean square deviation. The protein-ligand contacts depicted pi-pi stacking, pi-cation, hydrogen bonds, and water bridges with the amino acids necessary for NK1R inhibition. The variable colour band intensities on the protein-ligand contact map indicated their binding strength with amino acids. The molecular mechanics/generalized born surface area (MM-GBSA) scores suggested favourable binding free energy of the complexes. Thus, our study predicted the ability of L-NAT, indacaterol, modafinil, and alosetron as capable NK1R inhibitors that can aid to curb neuroinflammation in conditions of AD which could be further ascertained in subsequent studies.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Doenças Neuroinflamatórias
5.
Metab Brain Dis ; 37(6): 1969-1976, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35554791

RESUMO

NAD+-dependent histone deacetylases (sirtuins 1-7) have been shown to be involved in various pathophysiological conditions including their involvement in cardiovascular, cancerous, neurodegenerative, immune dysregulation and inflammatory conditions. This study investigates the inflammomodulatory potential of resveratrol (RES), a sirtuin activator and sirtinol (SIR), a sirtuin inhibitor in lipopolysaccharide (LPS)-induced model of sickness behaviour in mice. Male Swiss albino mice were divided into five groups (n = 6) consisting of saline (SAL), LPS, RES, SIR, and fluoxetine (FLU) respectively, each group except LPS was prepared by intraperitoneally (i.p.) administration of SAL (10 mL/kg), RES (50 mg/kg), SIR (2 mg/kg) and FLU (10 mg/kg). Thirty minutes after the treatments, all the groups, except SAL were administered LPS (2 mg/kg, i.p.). The behavioural assays including, open field test, forced swim test, and tail suspension tests were conducted 1 h after LPS challenge. LPS administration significantly reduced the locomotor activity along with inducing a state of high immobility and that was prevented by pretreatment with RES and SIR. Further, various proinflammatory cytokines (TNF-α, IL-6, and IL-1ß), and oxidative stress markers (MDA and GSH) were found to be significantly elevated in the brain homogenates after LPS treatment. SIR pretreatment abrogated the LPS-induced neuroinflammatory and oxidative stress changes, whereas RES was only effective in reducing the oxidative stress and TNF-α levels. The results of this study speculate that the role of SIRT modulators in neuroinflammatory conditions could vary with their dose, regimen and chemical properties. Further studies with detailed molecular and pharmacokinetic profiling will be needed to explore their therapeutic potentials.


Assuntos
Antioxidantes , Inibidores Enzimáticos , Comportamento de Doença , Estresse Oxidativo , Resveratrol , Sirtuínas , Animais , Antioxidantes/farmacologia , Inibidores Enzimáticos/farmacologia , Fluoxetina/farmacologia , Comportamento de Doença/efeitos dos fármacos , Comportamento de Doença/fisiologia , Lipopolissacarídeos , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Resveratrol/farmacologia , Sirtuínas/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
6.
Toxicol Mech Methods ; 30(2): 88-99, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31532266

RESUMO

Neprilysin (NEP) is an endogenously induced peptidase for modulating production and degradation of various peptides in humans. It is most abundantly present in kidney and regulates the intrinsic renal homeostatic mechanism. Recently, drugs inhibiting NEP have been approved for the use in heart failure. In the context of increased prevalence of ischemia associated renal failure, NEP could be an attractive target for treating kidney failure. In the kidney, targeting NEP may possess potential benefits as well as adverse consequences. The unfavorable outcomes of NEP are mainly attributed to the degradation of the natriuretic peptides (NPs). NPs are involved in the inhibition of the renin-angiotensin-aldosterone system (RAAS) and activation of the sympathetic system contributing to the tubular and glomerular injury. In contrary, NEP exerts the beneficial effect by converting angiotensin-1 (Ang I) to angiotensin-(1-7) (Ang-(1-7)), thus activating MAS-related G-protein coupled receptor. MAS receptor antagonizes angiotensin type I receptor (AT-1R), reduces reactive oxygen species (ROS) and inflammation, thus ameliorating renal injury. However, the association of NEP with complex cascades of renal ischemia remains vague. Therefore, there is a need to evaluate the putative mechanism of NEP and its overlap with other signaling cascades in conditions of renal ischemia.


Assuntos
Isquemia/enzimologia , Rim/enzimologia , Neprilisina/antagonistas & inibidores , Insuficiência Renal/enzimologia , Angiotensina I/metabolismo , Animais , Humanos , Isquemia/complicações , Rim/irrigação sanguínea , Peptídeos Natriuréticos/metabolismo , Fragmentos de Peptídeos/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Insuficiência Renal/etiologia , Sistema Renina-Angiotensina/fisiologia , Transdução de Sinais
7.
Pharmacology ; 103(5-6): 315-319, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30870859

RESUMO

BACKGROUND: Cyclooxygenase (COX)-lipooxygenase (LOX) pathway plays a key role in the pathogenesis of renal ischemia/reperfusion (IR). OBJECTIVE: This study was aimed to evaluate the role of dietary phenol caffeic acid (CA), alone and in combination with selective COX-2 inhibitor celecoxib (CEL) in IR-induced acute renal failure (ARF) in rats. MATERIALS AND METHODS: Renal IR was induced by bilateral occlusion of renal pedicels for 90 min followed by reperfusion for 24 h. Rats were randomized into 4 groups: Sham, IR, CA + IR, and CA + CEL + IR, with 7 day treatment before IR. Serum creatinine (SCr), blood urea nitrogen (BUN), antioxidant enzymes, tumor necrosis factor alpha (TNF-α), and histopathological changes were evaluated in the kidney after IR. RESULTS: Renal IR caused significant derangement in renal function and histology. In the IR group, an increase in lipid peroxidation and decreased antioxidant defense enzyme activity were observed. Pretreatment with CA and CA + CEL showed a significant decrease in the BUN, SCr, TNF-α, oxidative stress markers and corrected the histological changes in the kidney. CONCLUSION: This study demonstrated the renoprotective potential of CA and combination of CA + CEL in IR-induced ARF in rats. The plausible mechanisms for the efficacy of CA could be attributed to its ability to modulate the -COX-LOX system in renal IR.


Assuntos
Injúria Renal Aguda/prevenção & controle , Ácidos Cafeicos/farmacologia , Celecoxib/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Antioxidantes/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo , Nitrogênio da Ureia Sanguínea , Ácidos Cafeicos/administração & dosagem , Celecoxib/administração & dosagem , Creatinina/sangue , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Inibidores de Ciclo-Oxigenase 2/farmacologia , Quimioterapia Combinada , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Wistar , Traumatismo por Reperfusão/complicações , Fator de Necrose Tumoral alfa/metabolismo
8.
Inflammopharmacology ; 27(5): 941-948, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31482259

RESUMO

Metformin (MET), a biguanide oral hypoglycaemic agent, recently has been shown to be effective in various conditions other than type-2 diabetes including cancer, stroke, weight reduction, and polycystic ovarian syndrome, to name a few. MET has also possessed antioxidant and antiinflammatory properties by activation of AMPK . This study was aimed at evaluating the effects of MET on lipopolysaccharide (LPS)-induced systemic and neuroinflammation, oxidative stress, and behavioural changes. The study consisted of six groups, where three selected doses of MET (100, 200, and 300 mg/kg) were employed in male Swiss albino mice, with one group of imipramine (IMI), saline, and LPS each. Systemic inflammation was induced by injecting LPS (1.5 mg/kg) by intraperitoneal route. A battery of behavioural tests including open field, forced swim, and tail suspension tests were employed to assess the impact of systemic inflammation on exploratory behaviour and learned helplessness. LPS induced significant immobility with profound symptoms of sickness behaviour. Furthermore, LPS led to significant increase in serum and brain proinflammatory cytokines TNF-α and IL-6; and also increased lipid peroxidation with reduced glutathione levels. Pretreatment of the animals with 100 and 200 mg/kg of MET significantly reduced both systemic and central inflammatory markers along with protecting against LPS-induced oxidative stress. The higher dose, 300 mg/kg of MET was not effective against most of LPS-induced biochemical changes. Our preliminary results from this study suggest the antiinflammatory and neuroprotective effects of MET in LPS-induced model of sickness behaviour and neuroinflammation.


Assuntos
Encéfalo/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Inflamação/tratamento farmacológico , Metformina/farmacologia , Animais , Antioxidantes/metabolismo , Encéfalo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Glutationa/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos
9.
Toxicol Mech Methods ; 29(5): 334-343, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30588862

RESUMO

Para-methoxycinnamic acid (PMCA) and Ethyl-p-methoxycinnamate (EPMC) are reported to possess neuroprotective effect in reversing an acute memory deficit. However, there is a dearth of evidence for their therapeutic effect in chronic memory deficit. Thus, there is a scope to study these derivatives against the chronic model of cognitive dysfunction. The present study was aimed to determine the cognitive enhancing activity of PMCA and EPMC in aluminum-induced chronic dementia. Cognitive enhancing property of PMCA and EPMC was assessed using Morris water maze by analyzing spatial memory parameters such as escape latency, D-quadrant latency, and island entries. To find a possible mechanism, the effect of test compounds on altered acetylcholinesterase (AChE) activity and oxidative stress was determined in the hippocampus and frontal cortex of rats. Docking interaction of these derivatives with acetylcholinesterase enzyme and glutamate receptors was also studied. Treatment with PMCA and EPMC showed a significant improvement in spatial memory markers and altered hippocampal AChE activity in rats with cognitive dysfunction. The implication of hippocampal and cortical oxidative stress in memory impairment was confirmed with decreased catalase/increased thiobarbituric acid reactive substances (TBARS) in rats. PMCA and EPMC reversed the oxidative stress in the brain by negatively affecting TBARS levels. Against depleted catalase levels, PMCA was more effective than EPMC in raising the depleted catalase levels. In silico analysis revealed poor affinity of EPMC and PMCA with AChE enzyme and glutamate receptor. To conclude, PMCA and EPMC exerted cognitive enhancing property independent of direct AChE and glutamate receptor inhibition.


Assuntos
Alumínio/toxicidade , Cinamatos/farmacologia , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase/metabolismo , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/enzimologia , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Simulação de Acoplamento Molecular , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Memória Espacial/efeitos dos fármacos
10.
Metab Brain Dis ; 33(4): 1045-1051, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29516413

RESUMO

Antipsychotic drugs are the mainstay of psychotic disorders. The 'typical' antipsychotic agents are commonly employed for the positive symptoms of schizophrenia, though at an expense of extrapyramidal side effects (EPS). In the present study, we employed haloperidol (HP)-induced catalepsy model in mice to evaluate the role of adenosine receptor antagonist and cyclooxygenase (COX) enzyme inhibitor in the amelioration of EPS. HP produced a full blown catalepsy, akinesia and a significant impairment in locomotion and antioxidant status. Pre-treatment with COX inhibitor; naproxen (NPx) and adenosine receptor antagonist; caffeine (CAF), showed a significant impact on HP-induced cataleptic symptoms. Adenosine exerts pivotal control on dopaminergic receptors and is also involved in receptor internalization and recycling. On the other hand, prostaglandins (PGs) are implicated as neuro-inflammatory molecules released due to microglial activation in both Parkinson's disease (PD) and antipsychotics-induced EPS. The involvement of these neuroeffector molecules has led to the possibility of use of CAF and COX inhibitors as therapeutic approaches to reduce the EPS burden of antipsychotic drugs. Both these pathways seem to be interlinked to each other, where adenosine modulates the formation of PGs through transcriptional modulation of COXs. We observed an additive effect with combined treatment of NPx and CAF against HP-induced movement disorder. These effects lead us to propose that neuromodulatory pathways of dopaminergic circuitry need to be explored for further understanding and utilizing the full therapeutic potential of antipsychotic agents.


Assuntos
Doenças dos Gânglios da Base/tratamento farmacológico , Catalepsia/tratamento farmacológico , Inibidores de Ciclo-Oxigenase/uso terapêutico , Haloperidol/efeitos adversos , Atividade Motora/efeitos dos fármacos , Antagonistas de Receptores Purinérgicos P1/uso terapêutico , Animais , Antipsicóticos/efeitos adversos , Doenças dos Gânglios da Base/induzido quimicamente , Cafeína/farmacologia , Cafeína/uso terapêutico , Catalepsia/induzido quimicamente , Inibidores de Ciclo-Oxigenase/farmacologia , Masculino , Camundongos , Naproxeno/farmacologia , Naproxeno/uso terapêutico , Antagonistas de Receptores Purinérgicos P1/farmacologia , Resultado do Tratamento
11.
Toxicol Mech Methods ; 28(5): 328-334, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29185389

RESUMO

Neuroinflammation plays an important role in the pathophysiology of Alzheimer's disease. Neurokinin substance P is a key mediator which modulates neuroinflammation through neurokinin receptor. Involvement of substance P in Alzheimer's disease is still plausible and various controversies exist in this hypothesis. Preventing the deleterious effects of substance P using N-acetyl-L-tryptophan, a substance P antagonist could be a promising therapeutic strategy. This study was aimed to evaluate the effect of N-acetyl-L-tryptophan on aluminum induced spatial memory alterations in rats. Memory impairment was induced using aluminum chloride (AlCl3) at a dose of 10 mg/kg for 42 d. After induction of dementia, rats were exposed to 30 and 50 mg/kg of N-acetyl-L-tryptophan for 28 d. Spatial memory alterations were measured using Morris water maze. Acetylcholinesterase activity and antioxidant enzyme glutathione level were assessed in hippocampus, frontal cortex and striatum. The higher dose of N-acetyl-L-tryptophan (50 mg/kg) significantly improved the aluminum induced memory alterations. N-acetyl-L-tryptophan exposure resulted in significant increase in acetylcholinesterase activity and glutathione level in hippocampus. The neuroprotective effect of N-acetyl-L-tryptophan could be due to its ability to block substance P mediated neuroinflammation, reduction in oxidative stress and anti-apoptotic properties. To conclude, N-acetyl-L-tryptophan may be considered as a novel neuroprotective therapy in Alzheimer's disease.


Assuntos
Compostos de Alumínio , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cloretos , Transtornos da Memória/prevenção & controle , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Fármacos Neuroprotetores/farmacologia , Memória Espacial/efeitos dos fármacos , Triptofano/análogos & derivados , Acetilcolinesterase/metabolismo , Cloreto de Alumínio , Animais , Apoptose/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Proteínas Ligadas por GPI/metabolismo , Glutationa/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Transtornos da Memória/psicologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Fatores de Tempo , Triptofano/farmacologia
12.
Indian J Exp Biol ; 52(11): 1082-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25434103

RESUMO

Sorghum is one of the commercially feasible lignocellulosic biomass and has a great potential of being sustainable feedstock for renewable energy. As with any lignocellulosic biomass, sorghum also requires pretreatment which increases its susceptibility to hydrolysis by enzymes for generating sugars which can be further fermented to alcohol. In the present study, sorghum biomass was evaluated for deriving maximum fermentable sugars by optimizing various pretreatment parameters using statistical optimization methods. Pretreatment studies were done with H2SO4, followed by enzymatic saccharification. The efficiency of the process was evaluated on the basis of production of the total reducing sugars released during the process. Compositional analysis was done for native as well as pretreated biomass and compared. The biomass pretreated with the optimized conditions could yield 0.408 g of reducing sugars /g of pretreated biomass upon enzymatic hydrolysis. The cellulose content in the solid portion obtained after pretreatment using optimised conditions was found to be increased by 43.37% with lesser production of inhibitors in acid pretreated liquor.


Assuntos
Carboidratos/isolamento & purificação , Celulase/farmacologia , Sorghum/efeitos dos fármacos , Ácidos Sulfúricos/farmacologia , Biomassa , Fermentação , Ácido Clorídrico/farmacologia , Concentração de Íons de Hidrogênio , Hidrólise , Ácido Nítrico/farmacologia , Extratos Vegetais/química , Caules de Planta/química , Caules de Planta/efeitos dos fármacos , Polissacarídeos/metabolismo , Sorghum/química , Temperatura , Xilose/isolamento & purificação
13.
Korean J Physiol Pharmacol ; 18(5): 365-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25352754

RESUMO

Cedrus deodara (Pinaceae) has been used traditionally in Ayurveda for the treatment of central nervous system disorders. 3,4-bis(3,4-dimethoxyphenyl)furan-2,5-dione (BDFD) was isolated from heart wood of Cedrus deodara and was shown to have antiepileptic and anxiolytic activity. Thus, the present study was aimed to explore its anti-depressant effect and to correlate the effect with serotonin and nor adrenaline levels of brain. Albino mice were used as experimental animal. Animals were divided in to three groups; vehicle control, imipramine (30 mg/kg i.p.), BDFD (100 mg/kg i.p.). Tail suspension test (TST) and forced swim test (FST) was performed to evaluate antidepressant effect of BDFD. BDFD (100 mg/kg, i.p.) showed a significant decrease in immobility time when subjected to FST whereas immobility time was not significantly altered in TST. BDFD treatment increased serotonin and noradrenaline levels in the brain which is indicative of BDFD having possible atypical antidepressant action.

14.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1829-1839, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37755515

RESUMO

Ferulic acid (FA) and p-coumaric acid (PCA) are abundantly present in commonly consumed food and beverages. Being polyphenolic compounds, they have been explored for their antioxidant and anti-inflammatory properties. Based on our previous study, we selected these two compounds to further investigate their potential in lipopolysaccharide (LPS)-induced sickness behavior and the ensuing neuroinflammation by specifically focusing on the NLRP3 inflammasome pathway. Male Swiss albino mice were divided into nine groups (n = 6) consisting of Normal Control, LPS, fluoxetine (FLX), FA40, FA160, FA640, PCA40, PCA160, and PCA640 respectively. Each group received respective FA or PCA treatment except Normal Control and LPS, which received the vehicle, carboxymethylcellulose 0.25% w/v. All groups were challenged with LPS 1.5 mg/kg, intraperitoneally except the Normal Control group, which received saline. Behavioral assessments were performed between 1-2 h, and the whole brains were collected at 3 h post-LPS administration. LPS-induced sickness behavior was characterized by significantly reduced spontaneous activity and high immobility time. The expression of NLRP3, ASC, caspase-1 and IL-1ß was significantly increased, along with the levels of brain IL-1ß suggesting the assembly and activation of NLRP3 inflammasome pathway. Furthermore, the major cytokines involved in sickness behavior, IL-6 and TNF-α were also significantly elevated with the accompanied lipid peroxidation. The results of this study emphasize that within the employed dose ranges of both FA and PCA, both the compounds were effective at blocking the activation of the NLRP3 inflammasome pathway and thereby reducing the release of IL-1ß and the sickness behavior symptoms. There was a prominent effect on cytokine levels and lipid peroxidation as well.


Assuntos
Ácidos Cumáricos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Masculino , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/toxicidade , Doenças Neuroinflamatórias , Comportamento de Doença , Citocinas/metabolismo , Interleucina-1beta/metabolismo
15.
Toxicon ; 239: 107611, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38211805

RESUMO

Melittin is honey bee venom's primary and most toxic pharmacologically active component. Melittin causes haemolysis, lymphocyte lysis, long-term pain, localised inflammation followed by rhabdomyolysis, and severe renal failure. Renal failure or cardiovascular complications could lead to the victim's death. Severe honey bee bites are treated with general medication involving antihistaminic, anti-inflammatory, and analgesic drugs, as a specific treatment option is unavailable. An earlier study showed the anti-hemolysis and anti-lymphocyte lysis activity of mini- αA-crystallin (MAC), a peptide derived from human eye lens alpha-crystallin. MAC's use has often been restricted despite its high therapeutic potential due to its poor skin permeability. This study compared the skin permeation, anti-inflammatory and analgesic activities of natural peptide MAC and its modified version (MAC-GRD) formed by attaching cell-penetrating peptide (CPP) and GRD amino residues into MAC. Gel formulations were prepared for MAC and MAC-GRD peptides using carbopol (1% w/w), Tween 80 (1%), and ethanol (10%). An ex-vivo skin permeation study was performed using a vertical-type Franz diffusion apparatus. Preclinical in-vivo experiments were conducted to compare the native and modified peptide formulations against melittin-induced toxicity in Wistar rats. MAC gel, MAC-GRD gel and 1% hydrocortisone cream significantly reduced the melittin-induced writhing (20.16 ± 0.792) response in rats with 15.16 ± 0.47, 11.16 ± 0.477 and 12.66 ± 0.66 wriths, respectively. There was a significant reduction in melittin-induced inflammation when MAC-GRD gel was applied immediately after melittin administration. At 0.5, 1, 3, and 5 h, the MAC-GRD-treated rat paws were 0.9 ± 0.043 mm, 0.750 ± 0.037 mm, 0.167 ± 0.0070 mm, and 0.133 ± 0.031 mm thick. Administration of melittin resulted in reduced GSH (antioxidant) levels (47.33 ± 0.760 µg/mg). However, treatment with MAC-GRD gel (71.167 ± 0.601 µg/mg), MAC gel (65.167 ± 1.138 µg/mg), and 1% hydrocortisone (68.33 ± 0.667 µg/mg) significantly increased the antioxidant enzyme levels. MAC-GRD gel significantly reduced the elevated MDA levels (6.933 ± 0.049 nmol/mg) compared to the melittin group (12.533 ± 0.126 nmol/mg), followed by the 1% hydrocortisone (7.367 ± 0.049 nmol/mg) and MAC gel (7.917 ± 0.048 nmol/mg). MAC-GRD demonstrated more skin permeability and superior anti-inflammatory, analgesic, and antioxidant activities when compared to MAC gel. When compared to standard 1% hydrocortisone cream, MAC-GRD had better anti-inflammatory, analgesic, antioxidant, and comparable action in anti-oxidant restoration against melittin. These findings suggest that the developed MAC-GRD gel formulation could help to treat severe cases of honey bee stings.


Assuntos
Cristalinas , Mordeduras e Picadas de Insetos , Insuficiência Renal , Ratos , Abelhas , Humanos , Animais , Meliteno/farmacologia , Hidrocortisona , Antioxidantes , Ratos Wistar , Peptídeos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Analgésicos , Inflamação
16.
Biology (Basel) ; 13(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38534427

RESUMO

Alzheimer's disease (AD) is a neurodegenerative condition that predominantly affects the hippocampus and the entorhinal complex, leading to memory lapse and cognitive impairment. This can have a negative impact on an individual's behavior, speech, and ability to navigate their surroundings. AD is one of the principal causes of dementia. One of the most accepted theories in AD, the amyloid ß (Aß) hypothesis, assumes that the buildup of the peptide Aß is the root cause of AD. Impaired insulin signaling in the periphery and central nervous system has been considered to have an effect on the pathophysiology of AD. Further, researchers have shifted their focus to epigenetic mechanisms that are responsible for dysregulating major biochemical pathways and intracellular signaling processes responsible for directly or indirectly causing AD. The prime epigenetic mechanisms encompass DNA methylation, histone modifications, and non-coding RNA, and are majorly responsible for impairing insulin signaling both centrally and peripherally, thus leading to AD. In this review, we provide insights into the major epigenetic mechanisms involved in causing AD, such as DNA methylation and histone deacetylation. We decipher how the mechanisms alter peripheral insulin signaling and brain insulin signaling, leading to AD pathophysiology. In addition, this review also discusses the need for newer drug delivery systems for the targeted delivery of epigenetic drugs and explores targeted drug delivery systems such as nanoparticles, vesicular systems, networks, and other nano formulations in AD. Further, this review also sheds light on the future approaches used for epigenetic drug delivery.

17.
CNS Neurol Disord Drug Targets ; 22(4): 539-557, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35422229

RESUMO

Neuroinflammation is one of the major pathological factors leading to Alzheimer's disease (AD). The role of microglial cells in neuroinflammation associated with AD has been known for a long time. Recently, astrocytic inflammatory responses have been linked to the neuronal degeneration and pathological development of AD. Lipopolysaccharide (LPS) and Amyloid Beta (Aß) activate astrocytes and microglial cells via toll-like 4 (TLR4) receptors leading to neuroinflammation. Reactive (activated) astrocytes mainly comprising of A1 astrocytes (A1s) are involved in neuroinflammation, while A2 astrocytes (A2s) possess neuroprotective activity. Studies link low dopamine (DA) levels during the early stages of neurodegenerative disorders with its anti-inflammatory and immuoregulatory properties. DA mediates neuroprotection via inhibition of the A1 astrocytic pathway through blockade of NF-kB and nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3); and promotion of A2 astrocytic pathways leading to the formation of neurotrophic factors like BDNF and GDNF. In this current review, we have discussed the crosstalk between the dopaminergic system in astrocytic TLR4 and NF-kB in addition to NLRP3 inflammasome in the modulation of neuroinflammatory pathologies in cognitive deficits.


Assuntos
Doença de Alzheimer , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peptídeos beta-Amiloides/metabolismo , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Dopamina/metabolismo , Astrócitos/metabolismo , Inflamassomos/metabolismo , Doença de Alzheimer/metabolismo , Cognição , Microglia/metabolismo
18.
Life Sci ; 317: 121463, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731648

RESUMO

Dry eye disease is a highly prevalent ocular condition that significantly affects the quality of life and presents a major challenge in ophthalmology. Animal models play a crucial role in investigating the pathophysiology and developing effective treatments. The goal of this study was to compare and standardize two dry eye disease rodent models and explore their recovery aspects. We have standardized benzalkonium chloride and scopolamine-induced dry eye disease models which represents two different classes of the dry eye i.e., evaporative dry eye and aqueous deficient dry eye, respectively. After the development of dry eye conditions, a self-recovery period of seven days was granted to assess the reversal of the induced changes. The dry eye condition was assessed by measuring tear volume, corneal slit lamp imaging, and histological examination of the cornea, the lacrimal and the harderian gland. The study indicated the development of chronic inflammation of the cornea and lacrimal gland in the case of benzalkonium after five days of the treatment, while the scopolamine treated group showed chronic inflammation of the lacrimal gland after five days and corneal inflammation after seven days of administration. The recovery study suggested that after discontinuation of inducing agent, the dry eye symptoms were still persistent suggesting the utility of the model in evaluating dry eye treatments. The study highlights the comparative changes in both models along with recovery which can serve as a base for drug discovery and development against dry eye disease.


Assuntos
Síndromes do Olho Seco , Aparelho Lacrimal , Animais , Compostos de Benzalcônio/efeitos adversos , Escopolamina/efeitos adversos , Roedores , Qualidade de Vida , Síndromes do Olho Seco/induzido quimicamente , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/patologia , Aparelho Lacrimal/patologia , Inflamação/patologia , Padrões de Referência , Modelos Animais de Doenças
19.
Mol Neurobiol ; 60(10): 5557-5577, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37326903

RESUMO

Neurodegenerative disorders (NDD) have grabbed significant scientific consideration due to their fast increase in prevalence worldwide. The specific pathophysiology of the disease and the amazing changes in the brain that take place as it advances are still the top issues of contemporary research. Transcription factors play a decisive role in integrating various signal transduction pathways to ensure homeostasis. Disruptions in the regulation of transcription can result in various pathologies, including NDD. Numerous microRNAs and epigenetic transcription factors have emerged as candidates for determining the precise etiology of NDD. Consequently, understanding by what means transcription factors are regulated and how the deregulation of transcription factors contributes to neurological dysfunction is important to the therapeutic targeting of pathways that they modulate. RE1-silencing transcription factor (REST) also named neuron-restrictive silencer factor (NRSF) has been studied in the pathophysiology of NDD. REST was realized to be a part of a neuroprotective element with the ability to be tuned and influenced by numerous microRNAs, such as microRNAs 124, 132, and 9 implicated in NDD. This article looks at the role of REST and the influence of various microRNAs in controlling REST function in the progression of Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) disease. Furthermore, to therapeutically exploit the possibility of targeting various microRNAs, we bring forth an overview of drug-delivery systems to modulate the microRNAs regulating REST in NDD.


Assuntos
MicroRNAs , Doenças Neurodegenerativas , Humanos , Fatores de Transcrição/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , MicroRNAs/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Epigênese Genética
20.
J Neuroimmune Pharmacol ; 18(3): 248-266, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37097603

RESUMO

Post-traumatic stress disorder (PTSD) is a chronic incapacitating condition with recurrent experience of trauma-related memories, negative mood, altered cognition, and hypervigilance. Agglomeration of preclinical and clinical evidence in recent years specified that alterations in neural networks favor certain characteristics of PTSD. Besides the disruption of hypothalamus-pituitary-axis (HPA) axis, intensified immune status with elevated pro-inflammatory cytokines and arachidonic metabolites of COX-2 such as PGE2 creates a putative scenario in worsening the neurobehavioral facet of PTSD. This review aims to link the Diagnostic and Statistical Manual of mental disorders (DSM-V) symptomology to major neural mechanisms that are supposed to underpin the transition from acute stress reactions to the development of PTSD. Also, to demonstrate how these intertwined processes can be applied to probable early intervention strategies followed by a description of the evidence supporting the proposed mechanisms. Hence in this review, several neural network mechanisms were postulated concerning the HPA axis, COX-2, PGE2, NLRP3, and sirtuins to unravel possible complex neuroinflammatory mechanisms that are obscured in PTSD condition.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Transtornos de Estresse Pós-Traumáticos/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Ciclo-Oxigenase 2 , Dinoprostona/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA