Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mov Disord ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007445

RESUMO

BACKGROUND: Burst-patterned pallidal deep brain stimulation (DBS) in an animal model of Parkinson's disease (PD) yields significantly prolonged therapeutic benefit compared to conventional continuous DBS, but its value in patients remains unclear. OBJECTIVES: The aims were to evaluate the safety and tolerability of acute (<2 hours) burst DBS in PD patients and to evaluate preliminary clinical effectiveness relative to conventional DBS. METHODS: Six PD patients were studied with DBS OFF, conventional DBS, and burst DBS. Unified Parkinson's Disease Rating Scale III (UPDRS-III) and proactive inhibition (using stop-signal task) were evaluated for each condition. RESULTS: Burst and conventional DBS were equally tolerated without significant adverse events. Both stimulation patterns provided equivalent significant UPDRS-III reduction and increased proactive inhibition relative to DBS OFF. CONCLUSIONS: This pilot study supports the safety and tolerability of burst DBS, with acute effects similar to conventional DBS. Further larger-scale studies are warranted given the potential benefits of burst DBS due to decreased total energy delivery. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
Neurosci Lett ; 741: 135486, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33161103

RESUMO

Parkinson's disease (PD) patients with postural instability and gait disorder phenotype (PIGD) are at high risk of cognitive deficits compared to those with tremor dominant phenotype (TD). Alterations of white matter (WM) integrity can occur in patients with normal cognitive functions (PD-N). However, the alterations of WM integrity related to cognitive functions in PD-N, especially in these two motor phenotypes, remain unclear. Diffusion tensor imaging (DTI) is a non-invasive neuroimaging method to evaluate WM properties and by applying DTI tractography, one can identify WM tracts connecting functional regions. Here, we 1) compared the executive function (EF) in PIGD phenotype with normal cognitive functions (PIGD-N) and TD phenotype with normal cognitive functions (TD-N) phenotypes; 2) used DTI tractography to evaluated differences in WM alterations between these two phenotypes within a task-based functional network; and 3) examined the WM integrity alterations related to EF in a whole brain network for PD-N patients regardless of phenotypes. Thirty-four idiopathic PD-N patients were classified into two groups based on phenotypes: TD-N and PIGD-N, using an algorithm based on UPDRS part III. Neuropsychological tests were used to evaluate patients' EF, including the Trail making test part A and B, the Stroop color naming, the Stroop word naming, the Stroop color-word interference task, as well as the FAS verbal fluency task and the animal category fluency tasks. DTI measures were calculated among WM regions associated with the verbal fluency network defined from previous task fMRI studies and compared between PIGD-N and TD-N groups. In addition, the relationship of DTI measures and verbal fluency scores were evaluated for our full cohort of PD-N patients within the whole brain network. These values were also correlated with the scores of the FAS verbal fluency task. Only the FAS verbal fluency test showed significant group differences, having lower scores in PIGD-N when compared to TD-N phenotype (p < 0.05). Compared to the TD-N, PIGD-N group exhibited significantly higher MD and RD in the tracts connecting the left superior temporal gyrus and left insula, and those connecting the right pars opercularis and right insula. Moreover, compared to TD-N, PIGD-N group had significantly higher RD in the tracts connecting right pars opercularis and right pars triangularis, and the tracts connecting right inferior temporal gyrus and right middle temporal gyrus. For the entire PD-N cohort, FAS verbal fluency scores positively correlated with MD in the superior longitudinal fasciculus (SLF). This study confirmed that PIGD-N phenotype has more deficits in verbal fluency task than TD-N phenotype. Additionally, our findings suggest: (1) PIGD-N shows more microstructural changes related to FAS verbal fluency task when compared to TD-N phenotype; (2) SLF plays an important role in FAS verbal fluency task in PD-N patients regardless of motor phenotypes.


Assuntos
Encéfalo/patologia , Função Executiva/fisiologia , Doença de Parkinson/patologia , Doença de Parkinson/psicologia , Substância Branca/patologia , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Testes Neuropsicológicos , Doença de Parkinson/diagnóstico por imagem , Fenótipo , Substância Branca/diagnóstico por imagem
3.
Science ; 374(6564): 201-206, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34618556

RESUMO

Symptoms of neurological diseases emerge through the dysfunction of neural circuits whose diffuse and intertwined architectures pose serious challenges for delivering therapies. Deep brain stimulation (DBS) improves Parkinson's disease symptoms acutely but does not differentiate between neuronal circuits, and its effects decay rapidly if stimulation is discontinued. Recent findings suggest that optogenetic manipulation of distinct neuronal subpopulations in the external globus pallidus (GPe) provides long-lasting therapeutic effects in dopamine-depleted (DD) mice. We used synaptic differences to excite parvalbumin-expressing GPe neurons and inhibit lim-homeobox-6­expressing GPe neurons simultaneously using brief bursts of electrical stimulation. In DD mice, circuit-inspired DBS provided long-lasting therapeutic benefits that far exceeded those induced by conventional DBS, extending several hours after stimulation. These results establish the feasibility of transforming knowledge of circuit architecture into translatable therapeutic approaches.


Assuntos
Estimulação Encefálica Profunda/métodos , Dopamina/deficiência , Globo Pálido/fisiopatologia , Neurônios/fisiologia , Doença de Parkinson/terapia , Estimulação Elétrica Nervosa Transcutânea/métodos , Animais , Modelos Animais de Doenças , Dopamina/genética , Feminino , Globo Pálido/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/citologia , Núcleo Subtalâmico/fisiopatologia , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA