Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glycobiology ; 19(11): 1163-75, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19506293

RESUMO

Effective representation and characterization of biosynthetic pathways of glycosylation can be facilitated by mathematical modeling. This paper describes the expansion of a previously developed detailed model for N-linked glycosylation with the further application of the model to analyze MALDI-TOF mass spectra of human N-glycans in terms of underlying cellular enzyme activities. The glycosylation reaction network is automatically generated by the model, based on the reaction specificities of the glycosylation enzymes. The use of a molecular mass cutoff and a network pruning method typically limits the model size to about 10,000 glycan structures. This allows prediction of the complete glycan profile and its abundances for any set of assumed enzyme concentrations and reaction rate parameters. A synthetic mass spectrum from model-calculated glycan profiles is obtained and enzyme concentrations are adjusted to bring the theoretically calculated mass spectrum into agreement with experiment. The result of this process is a complete characterization of a measured glycan mass spectrum containing hundreds of masses in terms of the activities of 19 enzymes. In addition, a complete annotation of the mass spectrum in terms of glycan structure is produced, including the proportions of isomers within each peak. The method was applied to mass spectrometric data of normal human monocytes and monocytic leukemia (THP1) cells to derive glycosyltransferase activity changes underlying the differences in glycan structure between the normal and diseased cells. Model predictions could lead to a better understanding of the changes associated with disease states, identification of disease-associated biomarkers, and bioengineered glycan modifications.


Assuntos
Glicosiltransferases/metabolismo , Leucemia/enzimologia , Modelos Biológicos , Monócitos/química , Monócitos/enzimologia , Polissacarídeos/química , Polissacarídeos/metabolismo , Configuração de Carboidratos , Interpretação Estatística de Dados , Glicosilação , Glicosiltransferases/química , Humanos , Leucemia/metabolismo , Software , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
J Immunol Methods ; 330(1-2): 130-6, 2008 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-17868684

RESUMO

Baculovirus-mediated expression of recombinant proteins for use in diagnostic assays is commonplace. We expressed a diagnostic antigen for cysticercosis, GP50, caused by the larval stage of Taenia solium, in both High Five and Sf9 insect cells. Upon evaluation of the specificity of recombinant GP50 (rGP50) in a western blot assay, we observed that 12.5% (21/168) of the serum samples from persons with a variety of parasitic infections other than cysticercosis reacted positive when rGP50 was produced in High Five cells. The same samples reacted negative when rGP50 was produced in Sf9 cells. The false positive reactivities of these other parasitic infection sera were abolished when rGP50, expressed in High Five cells, was deglycosylated. In addition, the same sera that reacted with rGP50 from High Five cells also reacted with recombinant human transferrin (rhTf) when expressed in High Five cells, but not Sf9 cells. High Five cells, but not Sf9 cells, modify many glycoproteins with a core alpha(1,3)-fucose. This same modification is found in the glycoproteins of several parasitic worms and is known to be immunogenic. Since the distribution of these worms is widespread and millions of people are infected, the use of recombinant proteins with N-linked glycosylation produced in High Five cells for diagnostic antigens is likely to result in a number of false positive reactions and a decrease in assay specificity.


Assuntos
Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/biossíntese , Cisticercose/diagnóstico , Glicoproteínas/biossíntese , Proteínas de Helminto/biossíntese , Processamento de Proteína Pós-Traducional , Spodoptera/metabolismo , Taenia solium/imunologia , Animais , Antígenos de Helmintos/genética , Baculoviridae/genética , Linhagem Celular , Cisticercose/parasitologia , Reações Falso-Positivas , Vetores Genéticos , Glicoproteínas/genética , Glicosilação , Proteínas de Helminto/genética , Humanos , Valor Preditivo dos Testes , Proteínas Recombinantes/biossíntese , Reprodutibilidade dos Testes , Spodoptera/citologia
3.
Curr Opin Struct Biol ; 14(5): 601-6, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15465322

RESUMO

Insects, yeasts and plants generate widely different N-glycans, the structures of which differ significantly from those produced by mammals. The processing of the initial Glc2Man9GlcNAc2 oligosaccharide to Man8GlcNAc2 in the endoplasmic reticulum shows significant similarities among these species and with mammals, whereas very different processing events occur in the Golgi compartments. For example, yeasts can add 50 or even more Man residues to Man(8-9)GlcNAc2, whereas insect cells typically remove most or all Man residues to generate paucimannosidic Man(3-1)GlcNAc2N-glycans. Plant cells also remove Man residues to yield Man(4-5)GlcNAc2, with occasional complex GlcNAc or Gal modifications, but often add potentially allergenic beta(1,2)-linked Xyl and, together with insect cells, core alpha(1,3)-linked Fuc residues. However, genomic efforts, such as expression of exogenous glycosyltransferases, have revealed more complex processing capabilities in these hosts that are not usually observed in native cell lines. In addition, metabolic engineering efforts undertaken to modify insect, yeast and plant N-glycan processing pathways have yielded sialylated complex-type N-glycans in insect cells, and galactosylated N-glycans in yeasts and plants, indicating that cell lines can be engineered to produce mammalian-like glycoproteins of potential therapeutic value.


Assuntos
Polissacarídeos/biossíntese , Animais , Catálise , Humanos , Insetos/metabolismo , Plantas/metabolismo , Leveduras/metabolismo
4.
Methods Mol Biol ; 1321: 171-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26082222

RESUMO

Insect cells lack the ability to synthesize the sialic acid donor molecule CMP-sialic acid or its precursor, sialic acid. In this chapter, we describe a method to engineer CMP-sialic acid synthesis capability into Spodoptera frugiperda (Sf9) cells, a prototypical insect cell line, by recombinant expression of sialic acid synthesis pathway genes using baculovirus technology. Co-expression of a sialuria mutant UDP-GlcNAc-2-epimerase/ManNAc kinase (EKR263L), wild-type sialic acid 9-phosphate synthase (SAS), and wild-type CMP-sialic acid synthetase (CSAS) in the presence of GlcNAc leads to synthesis of CMP-sialic acids synthesis to support sialylation of N-glycans on glycoproteins.


Assuntos
Insetos/genética , Ácido N-Acetilneuramínico/biossíntese , Animais , Baculoviridae/genética , Engenharia Genética/métodos , Glicoproteínas/genética , Polissacarídeos/genética , Proteínas Recombinantes/genética , Spodoptera/genética
5.
J Biol Chem ; 281(28): 19545-60, 2006 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16684772

RESUMO

Paucimannosidic glycans are often predominant in N-glycans produced by insect cells. However, a beta-N-acetylhexosaminidase responsible for the generation of paucimannosidic glycans in lepidopteran insect cells has not been identified. We report the purification of a beta-N-acetylhexosaminidase from the culture medium of Spodoptera frugiperda Sf9 cells (Sfhex). The purified Sfhex protein showed 10 times higher activity for a terminal N-acetylglucosamine on the N-glycan core compared with tri-N-acetylchitotriose. Sfhex was found to be a homodimer of 110 kDa in solution, with a pH optimum of 5.5. With a biantennary N-glycan substrate, it exhibited a 5-fold preference for removal of the beta(1,2)-linked N-acetylglucosamine from the Man alpha(1,3) branch compared with the Man alpha(1,6) branch. We isolated two corresponding cDNA clones for Sfhex that encode proteins with >99% amino acid identity. A phylogenetic analysis suggested that Sfhex is an ortholog of mammalian lysosomal beta-N-acetylhexosaminidases. Recombinant Sfhex expressed in Sf9 cells exhibited the same substrate specificity and pH optimum as the purified enzyme. Although a larger amount of newly synthesized Sfhex was secreted into the culture medium by Sf9 cells, a significant amount of Sfhex was also found to be intracellular. Under a confocal microscope, cellular Sfhex exhibited punctate staining throughout the cytoplasm, but did not colocalize with a Golgi marker. Because secretory glycoproteins and Sfhex are cotransported through the same secretory pathway and because Sfhex is active at the pH of the secretory compartments, this study suggests that Sfhex may play a role as a processing beta-N-acetylhexosaminidase acting on N-glycans from Sf9 cells.


Assuntos
Acetilglucosamina/química , beta-N-Acetil-Hexosaminidases/química , Sequência de Aminoácidos , Animais , Complexo de Golgi/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Dados de Sequência Molecular , Oligossacarídeos/química , Polissacarídeos/química , Homologia de Sequência de Aminoácidos , Spodoptera , Especificidade por Substrato
6.
Biochemistry ; 44(20): 7526-34, 2005 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-15895995

RESUMO

Previous studies have reported that insect cell lines lack the capacity to generate endogenously the nucleotide sugar, CMP-Neu5Ac, required for sialylation of glycoconjugates. In this study, the biosynthesis of this activated form of sialic acid completely from endogenous metabolites is demonstrated for the first time in insect cells by expressing the mammalian genes required for the multistep conversion of endogenous UDP-GlcNAc to CMP-Neu5Ac. The genes for UDP-GlcNAc-2-epimerase/ManNAc kinase (EK), sialic acid 9-phosphate synthase (SAS), and CMP-sialic acid synthetase (CSAS) were coexpressed in insect cells using baculovirus expression vectors, but the CMP-Neu5Ac and precursor Neu5Ac levels synthesized were found to be lower than those achieved with ManNAc supplementation due to feedback inhibition of the EK enzyme by CMP-Neu5Ac. When sialuria-like mutant EK genes, in which the site for feedback regulation has been mutated, were used, CMP-Neu5Ac was synthesized at levels more than 4 times higher than that achieved with the wild-type EK and 2.5 times higher than that achieved with ManNAc feeding. Addition of N-acetylglucosamine (GlcNAc), a precursor for UDP-GlcNAc, to the media increased the levels of CMP-Neu5Ac even more to a level 7.5 times higher than that achieved with ManNAc supplementation, creating a bottleneck in the conversion of Neu5Ac to CMP-Neu5Ac at higher levels of UDP-GlcNAc. The present study provides a useful biochemical strategy to synthesize and enhance the levels of the sialylation donor molecule, CMP-Neu5Ac, a critical limiting substrate for the generation of complex glycoproteins in insect cells and other cell culture systems.


Assuntos
Ácido N-Acetilneuramínico do Monofosfato de Citidina/química , Ácido N-Acetilneuramínico do Monofosfato de Citidina/metabolismo , Líquido Intracelular/química , Líquido Intracelular/metabolismo , Mutagênese Sítio-Dirigida , N-Acilneuraminato Citidililtransferase/biossíntese , Spodoptera/enzimologia , Spodoptera/genética , Animais , Arginina/genética , Baculoviridae/enzimologia , Baculoviridae/genética , Carboidratos Epimerases/antagonistas & inibidores , Carboidratos Epimerases/biossíntese , Carboidratos Epimerases/genética , Células Cultivadas , Hexosaminas/química , Hexosaminas/metabolismo , Humanos , Leucina/genética , Manosefosfatos , Mariposas/virologia , N-Acetilexosaminiltransferases/biossíntese , N-Acetilexosaminiltransferases/genética , N-Acilneuraminato Citidililtransferase/genética , Ratos , Doença do Armazenamento de Ácido Siálico/genética , Especificidade por Substrato/genética
7.
Glycoconj J ; 21(6): 343-60, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15514482

RESUMO

In the past decades, a large number of studies in mammalian cells have revealed that processing of glycoproteins is compartmentalized into several subcellular organelles that process N-glycans to generate complex-type oligosaccharides with terminal N -acetlyneuraminic acid. Recent studies also suggested that processing of N-glycans in insect cells appear to follow a similar initial pathway but diverge at subsequent processing steps. N-glycans from insect cell lines are not usually processed to terminally sialylated complex-type structures but are instead modified to paucimannosidic or oligomannose structures. These differences in processing between insect cells and mammalian cells are due to insufficient expression of multiple processing enzymes including glycosyltransferases responsible for generating complex-type structures and metabolic enzymes involved in generating appropriate sugar nucleotides. Recent genomics studies suggest that insects themselves may include many of these complex transferases and metabolic enzymes at certain developmental stages but expression is lost or limited in most lines derived for cell culture. In addition, insect cells include an N -acetylglucosaminidase that removes a terminal N -acetylglucosamine from the N-glycan. The innermost N -acetylglucosamine residue attached to asparagine residue is also modified with alpha(1,3)-linked fucose, a potential allergenic epitope, in some insect cells. In spite of these limitations in N-glycosylation, insect cells have been widely used to express various recombinant proteins with the baculovirus expression vector system, taking advantage of their safety, ease of use, and high productivity. Recently, genetic engineering techniques have been applied successfully to insect cells in order to enable them to produce glycoproteins which include complex-type N-glycans. Modifications to insect N-glycan processing include the expression of missing glycosyltransferases and inclusion of the metabolic enzymes responsible for generating the essential donor sugar nucleotide, CMP- N -acetylneuraminic acid, required for sialylation. Inhibition of N -acetylglucosaminidase has also been applied to alter N-glycan processing in insect cells. This review summarizes current knowledge on N-glycan processing in lepidopteran insect cell lines, and recent progress in glycoengineering lepidopteran insect cells to produce glycoproteins containing complex N-glycans.


Assuntos
Lepidópteros/metabolismo , Mamíferos/metabolismo , Polissacarídeos/metabolismo , Animais , Linhagem Celular , Engenharia Genética , Glicosilação , Lepidópteros/citologia , Lepidópteros/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA