Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443170

RESUMO

Invasive organisms pose a global threat and are exceptionally difficult to eradicate after they become abundant in their new habitats. We report a successful multitactic strategy for combating the pink bollworm (Pectinophora gossypiella), one of the world's most invasive pests. A coordinated program in the southwestern United States and northern Mexico included releases of billions of sterile pink bollworm moths from airplanes and planting of cotton engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). An analysis of computer simulations and 21 y of field data from Arizona demonstrate that the transgenic Bt cotton and sterile insect releases interacted synergistically to reduce the pest's population size. In Arizona, the program started in 2006 and decreased the pest's estimated statewide population size from over 2 billion in 2005 to zero in 2013. Complementary regional efforts eradicated this pest throughout the cotton-growing areas of the continental United States and northern Mexico a century after it had invaded both countries. The removal of this pest saved farmers in the United States $192 million from 2014 to 2019. It also eliminated the environmental and safety hazards associated with insecticide sprays that had previously targeted the pink bollworm and facilitated an 82% reduction in insecticides used against all cotton pests in Arizona. The economic and social benefits achieved demonstrate the advantages of using agricultural biotechnology in concert with classical pest control tactics.


Assuntos
Toxinas de Bacillus thuringiensis/genética , Bacillus thuringiensis/genética , Erradicação de Doenças/métodos , Gossypium/genética , Mariposas/genética , Controle Biológico de Vetores/métodos , Animais , Animais Geneticamente Modificados , Arizona , Toxinas de Bacillus thuringiensis/metabolismo , Simulação por Computador , Erradicação de Doenças/economia , Infertilidade/genética , Inseticidas/metabolismo , México , Mariposas/crescimento & desenvolvimento , Mariposas/patogenicidade , Plantas Geneticamente Modificadas , Sudoeste dos Estados Unidos
2.
Transgenic Res ; 25(1): 33-44, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26545599

RESUMO

Crops producing insecticidal crystal (Cry) proteins from the bacterium, Bacillus thuringiensis (Bt), are an important tool for managing lepidopteran pests on cotton and maize. However, the effects of these Bt crops on non-target organisms, especially natural enemies that provide biological control services, are required to be addressed in an environmental risk assessment. Amblyseius andersoni (Acari: Phytoseiidae) is a cosmopolitan predator of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), a significant pest of cotton and maize. Tri-trophic studies were conducted to assess the potential effects of Cry1Ac/Cry2Ab cotton and Cry1F maize on life history parameters (survival rate, development time, fecundity and egg hatching rate) of A. andersoni. We confirmed that these Bt crops have no effects on the biology of T. urticae and, in turn, that there were no differences in any of the life history parameters of A. andersoni when it fed on T. urticae feeding on Cry1Ac/Cry2Ab or non-Bt cotton and Cry1F or non-Bt maize. Use of a susceptible insect assay demonstrated that T. urticae contained biologically active Cry proteins. Cry proteins concentrations declined greatly as they moved from plants to herbivores to predators and protein concentration did not appear to be related to mite density. Free-choice experiments revealed that A. andersoni had no preference for Cry1Ac/Cry2Ab cotton or Cry1F maize-reared T. urticae compared with those reared on non-Bt cotton or maize. Collectively these results provide strong evidence that these crops can complement other integrated pest management tactics including biological control.


Assuntos
Gossypium/genética , Plantas Geneticamente Modificadas/fisiologia , Tetranychidae/fisiologia , Zea mays/genética , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Produtos Agrícolas , Endotoxinas/genética , Fertilidade , Gossypium/fisiologia , Proteínas Hemolisinas/genética , Herbivoria/fisiologia , Proteínas de Insetos , Larva , Controle Biológico de Vetores , Folhas de Planta/genética , Folhas de Planta/metabolismo , Comportamento Predatório/fisiologia , Receptores de Superfície Celular/genética , Medição de Risco/métodos , Zea mays/fisiologia
3.
Annu Rev Entomol ; 60: 621-45, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25423598

RESUMO

Biological control is an underlying pillar of integrated pest management, yet little focus has been placed on assigning economic value to this key ecosystem service. Setting biological control on a firm economic foundation would help to broaden its utility and adoption for sustainable crop protection. Here we discuss approaches and methods available for valuation of biological control of arthropod pests by arthropod natural enemies and summarize economic evaluations in classical, augmentative, and conservation biological control. Emphasis is placed on valuation of conservation biological control, which has received little attention. We identify some of the challenges of and opportunities for applying economics to biological control to advance integrated pest management. Interaction among diverse scientists and stakeholders will be required to measure the direct and indirect costs and benefits of biological control that will allow farmers and others to internalize the benefits that incentivize and accelerate adoption for private and public good.


Assuntos
Agricultura , Artrópodes , Controle de Pragas , Agricultura/economia , Animais , Controle de Pragas/economia , Plantas
4.
Proc Natl Acad Sci U S A ; 109(3): 775-80, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22215605

RESUMO

The refuge strategy is used worldwide to delay the evolution of pest resistance to insecticides that are either sprayed or produced by transgenic Bacillus thuringiensis (Bt) crops. This strategy is based on the idea that refuges of host plants where pests are not exposed to an insecticide promote survival of susceptible pests. Despite widespread adoption of this approach, large-scale tests of the refuge strategy have been problematic. Here we tested the refuge strategy with 8 y of data on refuges and resistance to the insecticide pyriproxyfen in 84 populations of the sweetpotato whitefly (Bemisia tabaci) from cotton fields in central Arizona. We found that spatial variation in resistance to pyriproxyfen within each year was not affected by refuges of melons or alfalfa near cotton fields. However, resistance was negatively associated with the area of cotton refuges and positively associated with the area of cotton treated with pyriproxyfen. A statistical model based on the first 4 y of data, incorporating the spatial distribution of cotton treated and not treated with pyriproxyfen, adequately predicted the spatial variation in resistance observed in the last 4 y of the study, confirming that cotton refuges delayed resistance and treated cotton fields accelerated resistance. By providing a systematic assessment of the effectiveness of refuges and the scale of their effects, the spatially explicit approach applied here could be useful for testing and improving the refuge strategy in other crop-pest systems.


Assuntos
Agricultura/métodos , Resistência a Inseticidas/efeitos dos fármacos , Piridinas/toxicidade , Animais , Arizona , Bacillus thuringiensis/efeitos dos fármacos , Gossypium/efeitos dos fármacos , Gossypium/genética , Gossypium/parasitologia , Hemípteros/efeitos dos fármacos , Plantas Geneticamente Modificadas , Análise de Regressão
5.
Transgenic Res ; 23(2): 257-64, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24026808

RESUMO

The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is an important pest of maize in the United States and many tropical areas in the western hemisphere. In 2001, Herculex I(®) (Cry1F) maize was commercially planted in the United States to control Lepidoptera, including S. frugiperda. In 2006, a population of S. frugiperda was discovered in Puerto Rico that had evolved resistance to Cry1F maize in the field, making it the first well-documented case of an insect with field resistance to a plant producing protein from Bacillus thuringiensis (Bt). Using this resistant population, we conducted tri-trophic studies with a natural enemy of S. frugiperda. By using resistant S. frugiperda, we were able to overcome possible prey-mediated effects and avoid concerns about potential differences in laboratory- or field-derived Bt resistance. We used the Cry1F-resistant S. frugiperda to evaluate effects of Cry1F on Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae), a larval endoparasitoid of S. frugiperda, over five generations. Our results clearly demonstrate that Cry1F maize does not affect development, parasitism, survivorship, sex ratio, longevity or fecundity of C. marginiventris when they parasitize Cry1F maize-fed S. frugiperda. Furthermore, the level of Cry1F protein in the leaves was strongly diluted when transferred from Bt maize to S. frugiperda and was not detected in larvae, cocoons or adults of C. marginiventris. Our results refute previous reports of C. marginiventris being harmed by Bt proteins and suggest that such results were caused by prey-mediated effects due to using Bt-susceptible lepidopteran hosts.


Assuntos
Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Spodoptera/parasitologia , Vespas/efeitos dos fármacos , Zea mays/genética , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Bioensaio , Endotoxinas/genética , Fertilidade/efeitos dos fármacos , Proteínas Hemolisinas/genética , Resistência a Inseticidas/genética , Longevidade/efeitos dos fármacos , Razão de Masculinidade , Spodoptera/efeitos dos fármacos , Vespas/fisiologia , Zea mays/microbiologia
6.
J Econ Entomol ; 107(3): 927-32, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25026649

RESUMO

Laboratory studies were conducted to investigate tritrophic transfer of insecticidal Cry proteins from transgenic cotton to an herbivore and its predator, and to examine effects of these proteins on the predator's development, survival, and reproduction. Cry1Ac and Cry2Ab proteins from the bacterium Bacillus thuringiensis (Bt) produced in Bollgard-II (BG-II, Event 15985) cotton plants were acquired by Thrips tabaci Lindeman (Thysanoptera: Thripidae), an important sucking pest of cotton, and its generalist predator, Orius insidiosus (Say) (Hemiptera: Anthocoridae). The average protein titers in BG-II cotton leaves were 1,256 and 43,637 ng Cry1Ac and Cry2Ab per gram fresh leaf tissue, respectively. At the second trophic level, larvae of T. tabaci reared on BG-II cotton for 48-96 h had 22.1 and 2.1% of the Cry1Ac and Cry2Ab levels expressed in leaves, respectively. At the third trophic level, O. insidiosus that fed on T. tabaci larvae had 4.4 and 0.3% of the Cry1Ac and Cry2Ab protein levels, respectively, expressed in BG-II plants. O. insidiosus survivorship, time of nymphal development, adult weight, preoviposition and postoviposition periods, fecundity, and adult longevity were not adversely affected owing to consumption of T. tabaci larvae that had fed on BG-II cotton compared with non-Bt cotton. Our results indicate that O. insidiosus, a common predator of T. tabaci, is not harmed by BG-II cotton when exposed to Bt proteins through its prey. Thus, O. insidiosus can continue to provide important biological control services in the cotton ecosystem when BG-II cotton is used to control primary lepidopteran pests.


Assuntos
Bacillus thuringiensis/genética , Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Gossypium/fisiologia , Proteínas Hemolisinas/metabolismo , Heterópteros/fisiologia , Tisanópteros/fisiologia , Animais , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Endotoxinas/genética , Ensaio de Imunoadsorção Enzimática , Comportamento Alimentar , Gossypium/genética , Proteínas Hemolisinas/genética , Heterópteros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Reprodução , Tisanópteros/crescimento & desenvolvimento
7.
J Econ Entomol ; 106(3): 1260-73, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23865191

RESUMO

The abundance and distribution of insect herbivores is determined by, among other things, plant quality and natural enemies. These two factors vary temporally and spatially, subsequently affecting seasonal population dynamics. The relative influence of plant quality and natural enemies on the seasonal dynamics of Bemisia tabaci (Gennadius) was investigated in a 3-yr field study in cotton. Plant quality was manipulated through varying irrigation regimes: irrigations done at 20, 40, and 60% soil water depletions; and natural enemy densities were manipulated using broad spectrum insecticide applications that reduced their densities compared with unsprayed controls. In each year, densities of B. tabaci eggs, large nymphs and adults were consistently higher when natural enemy densities were reduced compared with when they were left unaltered, regardless of irrigation regime. In contrast, effects of plant quality on densities of all whitefly stages were weak and inconsistent. In addition, natural enemy densities and predator:prey ratios also were not generally affected by plant quality. Interactions between natural enemies and plant quality on whitefly dynamics were rare. In general, whitefly densities were elevated two-thirds of the time and increased two- to sixfold when natural enemy densities were reduced compared with plant quality effects which influenced whitefly densities about one-third of the time and were expressed inconsistently over the years. This indicates that natural enemies exert a comparatively greater influence on seasonal dynamics of B. tabaci in cotton than plant quality, as manipulated by differential irrigation.


Assuntos
Irrigação Agrícola , Cadeia Alimentar , Gossypium/crescimento & desenvolvimento , Hemípteros/fisiologia , Animais , Arizona , Insetos/efeitos dos fármacos , Inseticidas/farmacologia , Ninfa/fisiologia , Compostos Organotiofosforados/farmacologia , Óvulo/fisiologia , Fosforamidas/farmacologia , Densidade Demográfica , Dinâmica Populacional , Distribuição Aleatória , Estações do Ano
8.
PLoS One ; 18(5): e0272831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37163549

RESUMO

Plot size is of practical importance in any integrated pest management (IPM) study that has a field component. Such studies need to be conducted at a scale relevant to species dynamics because their abundance and distribution in plots might vary according to plot size. An adequate plot size is especially important for researchers, technology providers and regulatory agencies in understanding effects of various insect control technologies on non-target arthropods. Plots that are too small might fail to detect potential harmful effects of these technologies due to arthropod movement and redistribution among plots, or from untreated areas and outside sources. The Arizona cotton system is heavily dependent on technologies for arthropod control, thus we conducted a 2-year replicated field experiment to estimate the optimal plot size for non-target arthropod studies in our system. Experimental treatments consisted of three square plot sizes and three insecticides in a full factorial. We established three plot sizes that measured 144 m2, 324 m2 and 576 m2. For insecticide treatments, we established an untreated check, a positive control insecticide with known negative effects on the arthropod community and a selective insecticide. We investigated how plot size impacts the estimation of treatment effects relative to community structure (27 taxa), community diversity, individual abundance, effect sizes, biological control function of arthropod taxa with a wide range of mobility, including Collops spp., Orius tristicolor, Geocoris spp., Misumenops celer, Drapetis nr. divergens and Chrysoperla carnea s.l.. Square 144 m2 plots supported similar results for all parameters compared with larger plots, and are thus sufficiently large to measure insecticidal effects on non-target arthropods in cotton. Our results are applicable to cotton systems with related pests, predators or other fauna with similar dispersal characteristics. Moreover, these results also might be generalizable to other crop systems with similar fauna.


Assuntos
Artrópodes , Besouros , Heterópteros , Inseticidas , Animais , Inseticidas/toxicidade , Controle de Insetos/métodos , Gossypium
9.
Transgenic Res ; 21(6): 1303-10, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22373893

RESUMO

Spodoptera frugiperda (JE Smith) represents the first documented case of field-evolved resistance to a genetically engineered crop expressing an insecticidal protein from Bacillus thuringiensis (Bt). In this case it was Cry1F-expressing maize (Mycogen 2A517). The ladybird beetle, Coleomegilla maculata, is a common and abundant predator that suppresses pest populations in maize and many other cropping systems. Its larvae and adults are polyphagous, feeding on aphids, thrips, lepidopteran eggs and larvae, as well as plant tissues. Thus, C. maculata may be exposed to Bt proteins expressed in genetically engineered crops by several pathways. Using Cry1F-resistant S. frugiperda larvae as prey, we evaluated the potential impact of Cry1F-expressing maize on several fitness parameters of C. maculata over two generations. Using Cry1F resistant prey removed any potential prey-mediated effects. Duration of larval and pupal stages, adult weight and female fecundity of C. maculata were not different when they were fed resistant S. frugiperda larvae reared on either Bt or control maize leaves during both generations. ELISA and insect-sensitive bioassays showed C. maculata were exposed to bioactive Cry1F protein. The insecticidal protein had no effect on C. maculata larvae, even though larvae contained 20-32 ng of Cry1F/g by fresh weight. Over all, our results demonstrated that the Cry1F protein did not affect important fitness parameters of one of S. frugiperda's major predators and that Cry1F protein did not accumulate but was strongly diluted when transferred during trophic interactions.


Assuntos
Bacillus thuringiensis/patogenicidade , Besouros/efeitos dos fármacos , Endotoxinas/metabolismo , Controle Biológico de Vetores , Comportamento Predatório , Spodoptera/fisiologia , Zea mays/parasitologia , Animais , Besouros/crescimento & desenvolvimento , Endotoxinas/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/parasitologia , Plantas Geneticamente Modificadas/efeitos adversos , Plantas Geneticamente Modificadas/metabolismo , Zea mays/genética , Zea mays/metabolismo
10.
Pest Manag Sci ; 78(10): 3988-4005, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35645142

RESUMO

BACKGROUND: The population dynamics of polyphagous pests such as Bemisia argentifolii (B. tabaci MEAM1) are governed by complex, interacting factors involving its cultivated and wild host plants, seasonality, movement and demography. To understand mechanisms contributing to population development and pest success within the agroecosystem, contiguous multi-host field sites were established in three environmentally distinct areas in Arizona. Life tables quantified and partition models described mortality sources and rates for immature insect stages on each host plant. RESULTS: Predation and dislodgement were the largest sources of marginal mortality, supplied the highest irreplaceable mortality and predation was the key factor. Rates of mortality were best predicted, in order, by source, temperature, host plant and season. Marginal mortality was highest for fourth-stage nymphs followed by eggs. Mortality rates were predicted in descending order by stage, temperature and season. Survivorship patterns varied among host plants, and generational mortality averaged 70% on spring cantaloupes but nearly 95% on all other hosts. Population density varied seasonally, persisting at low levels on winter hosts and expanding beginning in the spring; perennial hosts and weeds bridge populations year-round. CONCLUSION: Survival on winter hosts such as broccoli, albeit low, enables population continuity, whereas unusually high survivorship on spring crops like cantaloupe is an ecological release propelling population growth and driving regional dynamics in the summer and fall. This detailed understanding of mortality dynamics provides clues to the success of this invasive pest in our agroecosystems and facilitates opportunities for improved pest management at a broader landscape scale. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Hemípteros , Herbivoria , Animais , Produtos Agrícolas , Ninfa , Dinâmica Populacional
11.
BMC Res Notes ; 15(1): 199, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668538

RESUMO

OBJECTIVES: To assess potential non-target effects of genetically engineered/modified (GM) maize that produces insecticidal proteins from Bacillus thuringiensis (Bt), numerous field experiments have been conducted worldwide. Field data are often variable and influenced by uncontrolled factors and meta-analyses can recognize general effects with increased statistical power compared to individual studies. This database represents a comprehensive collection of experimental field data on non-target invertebrates in Bt and non-Bt maize. It was created for a systematic review with the question if growing Bt maize changes abundance or ecological function of non-target animals compared to growing of non-GM maize. Systematic literature searches identified relevant data. Authors were contacted for additional information or raw data if needed and a critical appraisal scheme was developed and applied to each data record. DATA DESCRIPTION: The database contains 7279 records of non-target invertebrate abundance, activity density, or predation or parasitism extracted from 120 articles. Records for individual species and life stages, but also aggregated data are available. Each record represents a comparison of invertebrates in Bt and non-Bt maize and includes means, standard deviations and sample sizes. Additional variables characterize publication details, experimental setup, cultivars, Bt proteins, geographic location, field management, insecticide treatments, sampling details, and taxonomy.


Assuntos
Bacillus thuringiensis , Inseticidas , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Invertebrados/genética , Plantas Geneticamente Modificadas/genética , Zea mays/genética
12.
J Econ Entomol ; 104(5): 1575-83, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22066187

RESUMO

Lesquerella, Physaria fendleri (A. Gray) S. Watson, is a mustard native to the western United States and is currently being developed as a commercial source of valuable hydroxy fatty acids that can be used in a number of industrial applications, including biolubricants, biofuel additives, motor oils, resins, waxes, nylons, plastics, corrosion inhibitors, cosmetics, and coatings. The plant is cultivated as a winter-spring annual and in the desert southwest it harbors large populations of arthropods, several of which could be significant pests once production expands. Lygus spp. (Hemiptera: Miridae) are common in lesquerella and are known pests of a number of agronomic and horticultural crops where they feed primarily on reproductive tissues. A 4-yr replicated plot study was undertaken to evaluate the probable impact of Lygus spp. on production of this potential new crop. Plant damage and subsequent seed yield and quality were examined relative to variable and representative densities of Lygus spp. (0.3-4.9 insects per sweep net) resulting from variable frequency and timing of insecticide applications. Increasing damage to various fruiting structures (flowers [0.9-13.9%], buds [1.2-7.1%], and seed pods [19.4-42.5%]) was significantly associated with increasing pest abundance, particularly the abundance of nymphs, in all years. This damage, however, did not consistently translate into reductions in seed yield (481-1,336 kg/ha), individual seed weight (0.5-0.7 g per 1,000 seed), or seed oil content (21.8-30.4%), and pest abundance generally explained relatively little of the variation in crop yield and quality. Negative effects on yield were not sensitive to the timing of pest damage (early versus late season) but were more pronounced during years when potential yields were lower due to weed competition and other agronomic factors. Results suggest that if the crop is established and managed in a more optimal fashion, Lygus spp. may not significantly limit yield. Nonetheless, additional work will be needed once more uniform cultivars become available and yield effects can be more precisely measured. Densities of Lygus spp. in unsprayed lesquerella are on par with those in other known agroecosystem level sources of this pest (e.g., forage and seed alfalfa, Medicago sativa L.). Thus, lesquerella production may introduce new challenges to pest management in crops such as cotton.


Assuntos
Brassicaceae/crescimento & desenvolvimento , Heterópteros/fisiologia , Animais , Arizona , Biodiversidade , Flores/crescimento & desenvolvimento , Herbivoria , Inseticidas , Ninfa/fisiologia , Dinâmica Populacional , Estações do Ano , Sementes/crescimento & desenvolvimento , Especificidade da Espécie
13.
J Econ Entomol ; 104(3): 773-81, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21735893

RESUMO

Two systemic neonicotinoids, imidacloprid and thiamethoxam, are widely used for residual control of several insect pests in cotton (Gossypium spp.), vegetables, and citrus (Citrus spp.). We evaluated their impact on six species of beneficial arthropods, including four parasitoid species--Aphytis melinus Debach, Gonatocerus ashmeadi Girault, Eretmocerus eremicus Rose & Zolnerowich, and Encarsia formosa Gahan--and two generalist predators--Geocoris punctipes (Say) and Orius insidiosus (Say)--in the laboratory by using a systemic uptake bioassay. Exposure to systemically treated leaves of both neonicotinoids had negative effects on adult survival in all four parasitoids, with higher potency against A. melinus as indicated by a low LC50. Mortality was also high for G. ashmeadi, E. eremicus, and E. formosa after exposure to both compounds but only after 48 h posttreatment. The two predators G. punctipes and O. insidiosus were variably susceptible to imidacloprid and thiamethoxam after 96-h exposure. However, toxicity to these predators may be related to their feeding on foliage and not just contact with surface residues. Our laboratory results contradict suggestions of little impact of these systemic neonicotinoids on parasitoids or predators but field studies will be needed to better quantify the levels of such impacts under natural conditions.


Assuntos
Heterópteros/fisiologia , Himenópteros/fisiologia , Imidazóis/toxicidade , Controle de Insetos/métodos , Inseticidas/toxicidade , Nitrocompostos/toxicidade , Oxazinas/toxicidade , Tiazóis/toxicidade , Animais , Citrus/química , Cadeia Alimentar , Hemípteros/fisiologia , Dose Letal Mediana , Neonicotinoides , Folhas de Planta/química , Salix/química , Tiametoxam
14.
Environ Entomol ; 50(2): 293-305, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33399185

RESUMO

Conservation biological control is a fundamental tactic in integrated pest management (IPM). Greater biological control services can be achieved by enhancing agroecosystems to be more favorable to the presence, survival, and growth of natural enemy populations. One approach that has been tested in numerous agricultural systems is the deployment of synthetic chemicals that mimic those produced by the plant when under attack by pests. These signals may attract arthropod natural enemies to crop habitats and thus potentially improve biological control activity locally. A 2-yr field study was conducted in the cotton agroecosystem to evaluate the potential of synthetic methyl salicylate (MeSA) to attract native arthropod natural enemies and to enhance biological control services on two key pests. Slow-release packets of MeSA were deployed in replicated cotton plots season long. The abundance of multiple taxa of natural enemies and two major pests were monitored weekly by several sampling methods. The deployment of MeSA failed to increase natural enemy abundance and pest densities did not decline. Predator to prey ratios, used as a proxy to estimate biological control function, also largely failed to increase with MeSA deployment. One exception was a season-long increase in the ratio of Orius tristicolor (White) (Hemiptera: Anthocoridae) to Bemisia argentifolii Bellows and Perring (= Bemisia tabaci MEAM1) (Hemiptera: Aleyrodidae) adults within the context of biological control informed action thresholds. Overall results suggest that MeSA would not likely enhance conservation biological control by the natural enemy community typical of U.S. western cotton production systems.


Assuntos
Artrópodes , Hemípteros , Animais , Ecossistema , Cadeia Alimentar , Controle Biológico de Vetores , Salicilatos
15.
Nat Ecol Evol ; 4(11): 1522-1530, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32868917

RESUMO

The Green Revolution is credited with alleviating famine, mitigating poverty and driving aggregate economic growth since the 1960s. In Asia, high-input technology packages secured a tripling of rice output, with germplasm improvements providing benefits beyond US$4.3 billion yr-1. Here, we unveil the magnitude and macro-economic relevance of parallel nature-based contributions to productivity growth in non-rice crops over the period 1918-2018 (across 23 different Asia-Pacific geopolitical entities). We empirically demonstrate how biological control resolved invasive pest threats in multiple agricultural commodities, ensuring annually accruing (on-farm) benefits of US$14.6-19.5 billion yr-1. Scientifically guided biological control of 43 exotic invertebrate pests permitted 73-100% yield-loss recovery in critical food, feed and fibre crops including banana, breadfruit, cassava and coconut. Biological control thereby promoted rural growth and prosperity even in marginal, poorly endowed, non-rice environments. By placing agro-ecological innovations on equal footing with input-intensive measures, our work provides lessons for future efforts to mitigate invasive species, restore ecological resilience and sustainably raise output of global agrifood systems.


Assuntos
Agricultura , Controle de Pragas , Ásia , Produtos Agrícolas , Humanos , Pobreza
16.
Nat Ecol Evol ; 4(11): 1567, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32901122

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Sci Rep ; 9(1): 2727, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30804420

RESUMO

Bt cotton was genetically modified to produce insecticidal proteins targeting Lepidopteran pests and is therefore only minimally affected by caterpillar damage. This could lead to reduced levels of inherent, systemically inducible defensive compounds in Bt cotton which might benefit other important cotton herbivores such as plant bugs. We studied the effects of plant defense induction on the performance of the plant bug Lygus hesperus by caging nymphs on different food sources (bolls/squares) of Bt and non-Bt cotton which were either undamaged, damaged by Bt tolerant caterpillars, or treated with jasmonic acid (JA). Terpenoid induction patterns of JA-treated and L. hesperus-damaged plants were characterized for different plant structures and artificial diet assays using purified terpenoids (gossypol/heliocide H1/4) were conducted. Nymphs were negatively affected if kept on plants damaged by caterpillars or sprayed with JA. Performance of nymphs was increased if they fed on squares and by the Bt-trait which had a positive effect on boll quality as food. In general, JA-sprayed plants (but not L. hesperus infested plants) showed increased levels of terpenoids in the plant structures analyzed, which was especially pronounced in Bt cotton. Nymphs were not negatively affected by terpenoids in artificial diet assays indicating that other inducible cotton responses are responsible for the found negative effects on L. hesperus. Overall, genetically engineered plant defenses can benefit plant bugs by releasing them from plant-mediated indirect competition with lepidopterans which might contribute to increasing numbers of hemipterans in Bt cotton.


Assuntos
Gossypium/fisiologia , Hemípteros/fisiologia , Herbivoria , Lepidópteros/fisiologia , Plantas Geneticamente Modificadas/fisiologia , Animais , Ciclopentanos/metabolismo , Gossypium/genética , Controle de Insetos , Ninfa/fisiologia , Oxilipinas/metabolismo , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Terpenos/metabolismo
18.
J Econ Entomol ; 101(1): 226-35, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18330139

RESUMO

Four sampling methods that included A-Vac, D-Vac, pole-bucket, and beat-net devices were evaluated for estimating relative densities of glassy-winged sharpshooter, Homalodisca vitri-pennis (Germar) (Hemiptera: Cicadellidae) nymphs and adults on citrus (Citrus spp.) trees. All four methods produced similar temporal and spatial distribution profiles, although significant differences in quantities of H. vitripennis adults and nymphs caught by each device were observed. The four sampling methods also showed a consistent male bias in adult populations across a range of densities, suggesting that previously reported male-biased sex ratios in H. vitripennis adult populations are real and not a product of sampling bias. A strong relationship (R2 = 0.95) between the monitoring methods we evaluated and yellow sticky trap catches of female H. vitripennis adults suggest that yellow sticky trap catches may provide a good relative index of infestation levels in citrus trees. Based on quantitative analyses examining precision and cost, the pole bucket was the most efficient method for sampling nymphs, and it was as efficient as the beat-net method for sampling adults and both stages combined. In addition to these analyses, consideration of other sampling characteristics such as added flexibility in sampling and higher sensitivity in detecting infestations within individual trees helped to fortify the conclusion that the pole bucket was the best overall sampling method of those tested.


Assuntos
Biometria/instrumentação , Biometria/métodos , Citrus/parasitologia , Hemípteros , Animais , Demografia , Feminino , Hemípteros/crescimento & desenvolvimento , Masculino , Ninfa , Densidade Demográfica , Razão de Masculinidade
19.
J Econ Entomol ; 111(3): 1056-1068, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29546368

RESUMO

Conservation biological control can be an effective tactic for minimizing insect-induced damage to agricultural production. In the Arizona cotton system, a suite of generalist arthropod predators provides critical regulation of Bemisia tabaci Gennadius (MEAM1) (Hemiptera: Aleyrodidae) and other pests. Arthropod predator and B. tabaci populations were manipulated with a range of broad-spectrum and selective insecticide exclusions to vary predator to prey interactions in a 2-yr field study. Predator to prey ratios associated with B. tabaci densities near the existing action threshold were estimated for six predator species found to be negatively associated with either adult and/or large nymphs of B. tabaci [Misumenops celer (Hentz) (Araneae: Thomisidae), Drapetis nr divergens (Diptera: Empididae), Geocoris pallens Stäl (Hemiptera: Geocoridae), Orius tristicolor (White) (Hemiptera: Anthocoridae), Chrysoperla carnea s.l. (Neuroptera: Chrysopidae), and Collops spp. (Coleoptera: Melyridae)] with the first three most consistently associated with declining B. tabaci densities. Ratios ranged from 1 M. celer per 100 sweeps to 1 B. tabaci adult per leaf to 44 D. nr. divergens per 100 sweeps to 1 large nymph per leaf disk. These ratios represent biological control informed thresholds that might serve as simple-to-use decision tool for reducing risk in the current B. tabaci integrated pest management strategy. The identification of key predators within the large, flexible food web of the cotton agro-ecosystem and estimation of predator to B. tabaci ratios clarifies the role of key predators in B. tabaci suppression, yielding potential decision-making advantages that could contribute to further improving economic and environmental sustainability of insect management in the cotton system.


Assuntos
Conservação dos Recursos Naturais/métodos , Tomada de Decisões , Cadeia Alimentar , Hemípteros/fisiologia , Controle Biológico de Vetores/métodos , Animais , Arizona , Gossypium/crescimento & desenvolvimento , Inseticidas/administração & dosagem , Densidade Demográfica
20.
PLoS One ; 13(11): e0205713, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30462653

RESUMO

Eggplant or brinjal (Solanum melongena) is a popular vegetable grown throughout Asia where it is attacked by brinjal fruit and shoot borer (BFSB) (Leucinodes orbonalis). Yield losses in Bangladesh have been reported up to 86% and farmers rely primarily on frequent insecticide applications to reduce injury. Bangladesh has developed and released four brinjal varieties producing Cry1Ac (Bt brinjal) and is the first country to do so. We report on the first replicated field trials comparing four Bt brinjal varieties to their non-Bt isolines, with and without standard insecticide spray regimes. Results of the two-year study (2016-17) indicated Bt varieties had increased fruit production and minimal BFSB fruit infestation compared with their respective non-Bt isolines. Fruit infestation for Bt varieties varied from 0-2.27% in 2016, 0% in 2017, and was not significantly affected by the spray regime in either year. In contrast, fruit infestation in non-Bt lines reached 36.70% in 2016 and 45.51% in 2017, even with weekly spraying. An economic analysis revealed that all Bt lines had higher gross returns than their non-Bt isolines. The non-sprayed non-Bt isolines resulted in negative returns in most cases. Maximum fruit yield was obtained from sprayed plots compared to non-sprayed plots, indicating that other insects such as whiteflies, thrips and mites can reduce plant vigor and subsequent fruit weight. Statistically similar densities of non-target arthropods, including beneficial arthropods, were generally observed in both Bt and non-Bt varieties. An additional trial that focused on a single Bt variety and its isoline provided similar results on infestation levels, with and without sprays, and similarly demonstrated higher gross returns and no significant effects on non-target arthropods. Together, these studies indicate that the four Bt brinjal lines are extremely effective at controlling BFSB in Bangladesh without affecting other arthropods, and provide greater economic returns than their non-Bt isolines.


Assuntos
Bacillus thuringiensis/fisiologia , Frutas/economia , Frutas/crescimento & desenvolvimento , Mariposas/fisiologia , Controle Biológico de Vetores , Solanum melongena/microbiologia , Solanum melongena/parasitologia , Animais , Bacillus thuringiensis/efeitos dos fármacos , Bangladesh , Frutas/efeitos dos fármacos , Inseticidas/toxicidade , Mariposas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Solanum melongena/efeitos dos fármacos , Solanum melongena/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA