RESUMO
Nonequilibrium states in soft condensed matter require a systematic approach to characterize and model materials, enhancing predictability and applications. Among the tools, X-ray photon correlation spectroscopy (XPCS) provides exceptional temporal and spatial resolution to extract dynamic insight into the properties of the material. However, existing models might overlook intricate details. We introduce an approach for extracting the transport coefficient, denoted as [Formula: see text], from the XPCS studies. This coefficient is a fundamental parameter in nonequilibrium statistical mechanics and is crucial for characterizing transport processes within a system. Our method unifies the Green-Kubo formulas associated with various transport coefficients, including gradient flows, particle-particle interactions, friction matrices, and continuous noise. We achieve this by integrating the collective influence of random and systematic forces acting on the particles within the framework of a Markov chain. We initially validated this method using molecular dynamics simulations of a system subjected to changes in temperatures over time. Subsequently, we conducted further verification using experimental systems reported in the literature and known for their complex nonequilibrium characteristics. The results, including the derived [Formula: see text] and other relevant physical parameters, align with the previous observations and reveal detailed dynamical information in nonequilibrium states. This approach represents an advancement in XPCS analysis, addressing the growing demand to extract intricate nonequilibrium dynamics. Further, the methods presented are agnostic to the nature of the material system and can be potentially expanded to hard condensed matter systems.
RESUMO
We probe the microstructural yielding dynamics of a concentrated colloidal system by performing creep/recovery tests with simultaneous collection of coherent scattering data via X-ray Photon Correlation Spectroscopy (XPCS). This combination of rheology and scattering allows for time-resolved observations of the microstructural dynamics as yielding occurs, which can be linked back to the applied rheological deformation to form structure-property relations. Under sufficiently small applied creep stresses, examination of the correlation in the flow direction reveals that the scattering response recorrelates with its predeformed state, indicating nearly complete microstructural recovery, and the dynamics of the system under these conditions slows considerably. Conversely, larger creep stresses increase the speed of the dynamics under both applied creep and recovery. The data show a strong connection between the microstructural dynamics and the acquisition of unrecoverable strain. By comparing this relationship to that predicted from homogeneous, affine shearing, we find that the yielding transition in concentrated colloidal systems is highly heterogeneous on the microstructural level.
RESUMO
Understanding the structural and dynamic properties of disordered systems at the mesoscale is crucial. This is particularly important in organic mixed ionic-electronic conductors (OMIECs), which undergo significant and complex structural changes when operated in an electrolyte. In this study, we investigate the mesoscale strain, reversibility and dynamics of a model OMIEC material under external electrochemical potential using operando X-ray photon correlation spectroscopy. Our results reveal that strain and structural hysteresis depend on the sample's cycling history, establishing a comprehensive kinetic sequence bridging the macroscopic and microscopic behaviours of OMIECs. Furthermore, we uncover the equilibrium and non-equilibrium dynamics of charge carriers and material-doping states, highlighting the unexpected coupling between charge carrier dynamics and mesoscale order. These findings advance our understanding of the structure-dynamics-function relationships in OMIECs, opening pathways for designing and engineering materials with improved performance and functionality in non-equilibrium states during device operation.
RESUMO
Arrested soft materials such as gels and glasses exhibit a slow stress relaxation with a broad distribution of relaxation times in response to linear mechanical perturbations. Although this macroscopic stress relaxation is an essential feature in the application of arrested systems as structural materials, consumer products, foods, and biological materials, the microscopic origins of this relaxation remain poorly understood. Here, we elucidate the microscopic dynamics underlying the stress relaxation of such arrested soft materials under both quiescent and mechanically perturbed conditions through X-ray photon correlation spectroscopy. By studying the dynamics of a model associative gel system that undergoes dynamical arrest in the absence of aging effects, we show that the mean stress relaxation time measured from linear rheometry is directly correlated to the quiescent superdiffusive dynamics of the microscopic clusters, which are governed by a buildup of internal stresses during arrest. We also show that perturbing the system via small mechanical deformations can result in large intermittent fluctuations in the form of avalanches, which give rise to a broad non-Gaussian spectrum of relaxation modes at short times that is observed in stress relaxation measurements. These findings suggest that the linear viscoelastic stress relaxation in arrested soft materials may be governed by nonlinear phenomena involving an interplay of internal stress relaxations and perturbation-induced intermittent avalanches.
RESUMO
Temperature-dependent x-ray photon correlation spectroscopy (XPCS) measurements are reported for a binary diblock-copolymer blend that self-assembles into an aperiodic dodecagonal quasicrystal and a periodic Frank-Kasper σ phase approximant. The measured structural relaxation times are Bragg scattering wavevector independent and are 5 times faster in the dodecagonal quasicrystal than the σ phase, with minimal temperature dependence. The underlying dynamical relaxations are ascribed to differences in particle motion at the grain boundaries within each of these tetrahedrally close-packed assemblies. These results identify unprecedented particle dynamics measurements of tetrahedrally coordinated micellar block polymers, thus expanding the application of XPCS to ordered soft materials.
RESUMO
Vivid, saturated structural colors are conspicuous and important features of many animals. A rich diversity of three-dimensional periodic photonic nanostructures is found in the chitinaceous exoskeletons of invertebrates. Three-dimensional photonic nanostructures have been described in bird feathers, but they are typically quasi-ordered. Here, we report bicontinuous single gyroid ß-keratin and air photonic crystal networks in the feather barbs of blue-winged leafbirds (Chloropsis cochinchinensis sensu lato), which have evolved from ancestral quasi-ordered channel-type nanostructures. Self-assembled avian photonic crystals may serve as inspiration for multifunctional applications, as they suggest efficient, alternative routes to single gyroid synthesis at optical length scales, which has been experimentally elusive.
Assuntos
Proteínas Aviárias/química , Evolução Biológica , Plumas/química , Nanoestruturas/química , Passeriformes , beta-Queratinas/química , Animais , Óptica e FotônicaRESUMO
To study nanostructures on substrates, surface-sensitive reflection-geometry scattering techniques such as grazing incident small angle X-ray scattering are commonly used to yield an averaged statistical structural information of the surface sample. Grazing incidence geometry can probe the absolute three-dimensional structural morphology of the sample if a highly coherent beam is used. Coherent surface scattering imaging (CSSI) is a powerful yet non-invasive technique similar to coherent X-ray diffractive imaging (CDI) but performed at small angles and grazing-incidence reflection geometry. A challenge with CSSI is that conventional CDI reconstruction techniques cannot be directly applied to CSSI because the Fourier-transform-based forward models cannot reproduce the dynamical scattering phenomenon near the critical angle of total external reflection of the substrate-supported samples. To overcome this challenge, we have developed a multislice forward model which can successfully simulate the dynamical or multi-beam scattering generated from surface structures and the underlying substrate. The forward model is also demonstrated to be able to reconstruct an elongated 3D pattern from a single shot scattering image in the CSSI geometry through fast-performing CUDA-assisted PyTorch optimization with automatic differentiation.
RESUMO
The entanglements of dynamically asymmetric polymer layers influence relaxations of nanoparticles in polymer nanocomposites. In this work, the dynamics of polymer-adsorbed and polymer-grafted nanoparticles in a poly(methyl acrylate) matrix polymer was investigated using X-ray photon correlation spectroscopy (XPCS) to understand the role of chain rigidity and chemical heterogeneities in particle dynamics. Locations of dynamic heterogeneities close to nanoparticles and away from particle surfaces were examined with the comparison of adsorbed and grafted nanoparticles. Our results show that the chemical heterogeneities around dispersed nanoparticles transitioned the particle dynamics from Brownian diffusion into hyperdiffusion, and moreover, the high rigidity of chains in the chemically heterogeneous interfacial layers slowed down the particle dynamics. The hyperdiffusion measured both in grafted particles and adsorbed particles was attributed to the dense interfacial mixing of dynamically heterogeneous chains.
RESUMO
Bicontinuous structures promise applications in a broad range of research fields, such as energy storage, membrane science, and biomaterials. Kinetically arrested spinodal decomposition is found responsible for stabilizing such structures in different types of materials. A recently developed solvent segregation driven gel (SeedGel) is demonstrated to realize bicontinuous channels thermoreversibly with tunable domain sizes by trapping nanoparticles in a particle domain. As the mechanical properties of SeedGel are very important for its future applications, a model system is characterized by temperature-dependent rheology. The storage modulus shows excellent thermo-reproducibility and interesting temperature dependence with the maximum storage modulus observed at an intermediate temperature range (around 28 °C). SANS measurements are conducted at different temperatures to identify the macroscopic solvent phase separation during the gelation transition, and solvent exchange between solvent and particle domains that is responsible for this behavior. The long-time dynamics of the gel is further studied by X-ray Photon Correlation Spectroscopy (XPCS). The results indicate that particles in the particle domain are in a glassy state and their long-time dynamics are strongly correlated with the temperature dependence of the storage modulus.
RESUMO
BACKGROUND: Leaves derived from the Kratom (Mitragyna speciosa) tree have been traditionally ingested for their curative properties by diverse groups of the population including people who use drugs (PWUDs) in Southeast Asia. This study investigated the motives for using kratom among drug-dependent adolescents. METHODS: Eighty adolescents who were undergoing mandatory drug rehabilitation volunteered to participate in this mixed-method, cross-sectional study. All respondents answered a semi-structured questionnaire while a few were interviewed in-depth. RESULTS: The majority were males (70%, n = 56/80). The respondents' mean age at admission was 18.2 years (SD = 1.40), and 65% were between 14 and 18 years old. Sixty-three percent (n = 50/80) had used crystal methamphetamine alone, while the rest had co-used crystal methamphetamine with heroin. About three-fifths (60%, n = 48/80) had a history of kratom use. Kratom was commonly used for many perceived benefits such as increasing energy, reducing crystal methamphetamine intake, intensifying euphoria, easing heroin withdrawal, as a heroin substitute and reducing heroin use. In addition, the multivariate analysis indicated that higher odds of kratom use were associated with those who were employed, used only crystal methamphetamine, were recent drug users, and had no prior incarceration history. CONCLUSION: While kratom was being used for its multifold perceived benefits, it also functions as a means to self-treat withdrawal from illicit drug use among drug-dependent adolescents.
RESUMO
Females who use drugs (FWUDs) are at risk of continuing illicit substance use during pregnancy and breastfeeding. We investigated the prevalence rates and factors associated with these practices in a sample of 200 FWUDs recruited from a publicly-run drug rehabilitation center. A semi-structured questionnaire was used to collect the data. The majority (86%) was Malay (n = 171/200), currently single (71%, n = 141/200), and 51% had nine years of education. The mean age of respondents was 32.2 years (SD = 8.61). Thirty-eight percent (n = 75/200) reported ever using illicit substances during pregnancy, while 15% (n = 30/200) had used them during breastfeeding. Higher odds of using drugs during pregnancy were associated with having an intimate male drug-using partner and with persons who reported abandoning an infant in the past. Lower odds were linked with women who used heroin with ATS (relative to those who used only ATS), and shorter-term ATS (≤3 years) relative to long term ATS users. At a lower level of significance (p = 0.054), being married also lowered the odds. Higher odds of drug use during breastfeeding were associated with having an intimate male drug-using partner, and previous methadone use history, while lower odds were associated with short-term ATS use and being employed. The findings highlight the need for timely and targeted interventions to inform, engage and promote the participation of FWUDs in pre- and post-natal care services.
Assuntos
Aleitamento Materno , Transtornos Relacionados ao Uso de Substâncias , Gravidez , Humanos , Feminino , Masculino , Adulto , Malásia , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Comportamento Sexual , Inquéritos e QuestionáriosRESUMO
Measured diffuse X-ray scattering data for a `smooth' as well as for a `rough' silicon sample were fit to theoretical expressions within the distorted wave Born approximation (DWBA). Data for the power spectral density (PSD) for both samples were also obtained by means of atomic force microscopy and optical interferometry. The Fourier transforms of trial correlation functions were fit to the PSD data and then applied to the DWBA formalism. The net correlation functions needed to fit the PSD data for each sample comprised the sum of two terms with different cutoff lengths and different self-affine fractal exponents. At zero distance these correlation functions added up to yield net values of σ2 = (2)2 and (71)2â Å2 for the smooth and rough samples, respectively. X-ray scattering data were obtained at beamline 1-BM of the Advanced Photon Source. Data and fits at values of qz = 0.05 and 0.10â Å-1 for the smooth sample are reported. Good fits for the smooth sample were obtained at both qz values simultaneously, that is, identical fitting parameters were applied at both values of qz. The smooth sample also exhibited weak Yoneda wings and a clear distinction between the strong specular scattering and the weak diffuse scattering. Data for the rough sample were qualitatively different and exhibited very weak scattering at the specular condition in contrast to extremely large Yoneda wings. Fits for the rough sample are reported for qz = 0.04, 0.05, and 0.06â Å-1. Although the large Yoneda wings could be fit quite well in both position and amplitude, scattering near the specular condition could not be equally well fit by applying the same fitting parameters at all values of qz. Albeit imperfect, best-fitting results at the specular condition were obtained by invoking only diffuse scattering, that is, without including a separate theoretical expression for specular scattering.
RESUMO
pyXPCSviewer, a Python-based graphical user interface that is deployed at beamline 8-ID-I of the Advanced Photon Source for interactive visualization of XPCS results, is introduced. pyXPCSviewer parses rich X-ray photon correlation spectroscopy (XPCS) results into independent PyQt widgets that are both interactive and easy to maintain. pyXPCSviewer is open-source and is open to customization by the XPCS community for ingestion of diversified data structures and inclusion of novel XPCS techniques, both of which are growing demands particularly with the dawn of near-diffraction-limited synchrotron sources and their dedicated XPCS beamlines.
RESUMO
Women with substance use disorders (SUDs) have been widely reported to face barriers in seeking treatment. We sought to identify barriers that prevented women who use methamphetamine (WWUM) from accessing the decade-old Voluntary Treatment Centers (VTCs) in Malaysia. A total of 153 WWUM who were undergoing rehabilitation for methamphetamine use at a compulsory drug detention center (CDDC) were recruited for this cross-sectional study. Data were collected by canvasing a structured questionnaire through face-to-face meetings. Of the total sample, 131 (86%) were Malays, with a mean age of 32.1 years. The commonly cited treatment barriers were the belief that methamphetamine use was not problematic (42%), not knowing how to seek treatment (38%), feeling embarrassed to seek treatment (33%), the lack of family support (24%), and the long waiting time for enrollment (23%). Logistic analyses indicated that a longer duration of use increased the odds of not acknowledging methamphetamine use as a problem while older participants had lower odds of holding a similar view. A longer duration of use also increased the odds of claiming treatment was not needed but lowered the odds of asserting a lack of confidence in treatment. Furthermore, Malays had higher odds of lacking family support in seeking treatment while being employed lowered the odds of not wanting treatment. Addressing these concerns will hopefully encourage higher participation of WWUM in voluntary treatment programs.
RESUMO
An experimental setup to measure X-ray photon correlation spectroscopy during continuous sample translation is presented and its effectiveness as a means to avoid sample damage in dynamics studies of protein diffusion is evaluated. X-ray damage from focused coherent synchrotron radiation remains below tolerable levels as long as the sample is translated through the beam sufficiently quickly. Here it is shown that it is possible to separate sample dynamics from the effects associated with the transit of the sample through the beam. By varying the sample translation rate, the damage threshold level, Dthresh = 1.8â kGy, for when beam damage begins to modify the dynamics under the conditions used, is also determined. Signal-to-noise ratios, Rsn ≥ 20, are obtained down to the shortest delay times of 20â µs. The applicability of this method of data collection to the next generation of multi-bend achromat synchrotron sources is discussed and it is shown that sub-microsecond dynamics should be obtainable on protein samples.
Assuntos
Proteínas , Síncrotrons , Raios XRESUMO
The performance of the new 52â kHz frame rate Rigaku XSPA-500k detector was characterized on beamline 8-ID-I at the Advanced Photon Source at Argonne for X-ray photon correlation spectroscopy (XPCS) applications. Due to the large data flow produced by this detector (0.2â PB of data per 24â h of continuous operation), a workflow system was deployed that uses the Advanced Photon Source data-management (DM) system and high-performance software to rapidly reduce area-detector data to multi-tau and two-time correlation functions in near real time, providing human-in-the-loop feedback to experimenters. The utility and performance of the workflow system are demonstrated via its application to a variety of small-angle XPCS measurements acquired from different detectors in different XPCS measurement modalities. The XSPA-500k detector, the software and the DM workflow system allow for the efficient acquisition and reduction of up to â¼109 area-detector data frames per day, facilitating the application of XPCS to measuring samples with weak scattering and fast dynamics.
RESUMO
This paper illustrates the use of spatial filtering with a horizontal slit near the source to enlarge the horizontal coherence in an experimental station and produce a diffraction-limited round focus at an insertion device beamline for X-ray photon correlation spectroscopy experiments. Simple expressions are provided to guide the optical layout, and wave propagation simulations confirm their applicability. The two-dimensional focusing performance of Be compound refractive lenses to produce a round diffraction-limited focus at 11â keV capable of generating a high-contrast speckle pattern of an aerogel sample is demonstrated. The coherent scattering patterns have comparable speckle sizes in both horizontal and vertical directions. The focal spot sizes are consistent with hybrid ray-tracing calculations. Producing a two-dimensional focus on the sample can be helpful to resolve speckle patterns with modern pixel array detectors with high visibility. This scheme has now been in use since 2019 for the 8-ID beamline at the Advanced Photon Source, sharing the undulator beam with two separate beamlines, 8-ID-E and 8-ID-I at 7.35â keV, with increased partially coherent flux, reduced horizontal spot sizes on samples, and good speckle contrast.
RESUMO
We study the structure and dynamics of poly(N-isopropylacrylamide) (PNIPAm) core-shell nanogels dispersed in aqueous trimethylamine N-oxide (TMAO) solutions by means of small-angle X-ray scattering and X-ray photon correlation spectroscopy (XPCS). Upon increasing the temperature above the lower critical solution temperature of PNIPAm at 33 °C, a colloidal gel is formed as identified by an increase of I(q) at small q as well as a slowing down of sample dynamics by various orders of magnitude. With increasing TMAO concentration the gelation transition shifts linearly to lower temperatures. Above a TMAO concentration of approximately 0.40â mol/L corresponding to a 1 : 1 ratio of TMAO and NIPAm groups, collapsed PNIPAm states are found for all temperatures without any gelation transition. This suggests that reduction of PNIPAm-water hydrogen bonds due to the presence of TMAO results in a stabilisation of the collapsed PNIPAm state and suppresses gelation of the nanogel.
RESUMO
Extant weevils exhibit a remarkable colour palette that ranges from muted monochromatic tones to rainbow-like iridescence, with the most vibrant colours produced by three-dimensional photonic nanostructures housed within cuticular scales. Although the optical properties of these nanostructures are well understood, their evolutionary history is not fully resolved, in part due to a poor knowledge of their fossil record. Here, we report three-dimensional photonic nanostructures preserved in brightly coloured scales of two weevils, belonging to the genus Phyllobius or Polydrusus, from the Pleistocene (16-10 ka) of Switzerland. The scales display vibrant blue, green and yellow hues that resemble those of extant Phyllobius/Polydrusus. Scanning electron microscopy and small-angle X-ray scattering analyses reveal that the subfossil scales possess a single-diamond photonic crystal nanostructure. In extant Phyllobius/Polydrusus, the near-angle-independent blue and green hues function primarily in crypsis. The preservation of far-field, angle-independent structural colours in the Swiss subfossil weevils and their likely function in substrate matching confirm the importance of investigating fossil and subfossil photonic nanostructures to understand the evolutionary origins and diversification of colours and associated behaviours (e.g. crypsis) in insects.
Assuntos
Gorgulhos , Animais , Cor , Fósseis , Microscopia Eletrônica de Varredura , SuíçaRESUMO
In literature, the presence of the supracondylar process, fibrous band enclosing the neurovascular structures, and the additional head of pronator teres have been reported as isolated reports. In this article, we describe three unique variations observed in the left upper limb of a 63-year-old female cadaver, (1) the variant origin of pronator teres from the supracondylar process, (2) the variant course of the median nerve and brachial artery passing through a fibrous tunnel in the lower third of the arm, later behind the supracondylar process and the variant pronator teres, and (3) the higher origin of radial artery from the brachial artery in the arm. The knowledge of such rare variants could be resourceful for surgeons in localizing the median nerve entrapment, interpreting arteriograms of the upper limb and avoiding accidental damage to the radial artery.