RESUMO
The giant extracellular hemoglobin of the annelid Glossoscolex paulistus (HbGp; 3.6 MDa) is a valuable and underexplored supramolecular hemoprotein system for the biorecognition of reactive oxygen species. In this work, an efficient and simple electrochemical platform was designed for analyzing H2O2, using HbGp covalently immobilized on Nafion®-modified glassy carbon electrode, named as HbGp/Nafion/GCE. Voltammetric and spectroscopic studies revealed the importance of prior modification of the electrodic support with the conducting polymer to obtain satisfactory hemoglobin electroactivity, as well as a biocompatible microenvironment for its immobilization. In terms of biological activity, it was observed a greater reactivity of the biomolecule in acidic medium, enabling the detection of the analyte by a quasi-reversible mechanism, whose kinetics was limited by analyte diffusion. In the presence of H2O2, the native structure of hemoglobin (oxy-HbGp (Fe2+)) oxidizes to ferryl-HbGp (Fe4+) and this redox reaction can be monitored on HbGp/Nafion/GCE with a detection limit of 8.5 × 10â7 mol L-1. In addition to high sensitivity, the electrochemical biosensor also provided reproducible, consistent, and accurate measurements. The electroanalytical method showed an appropriate performance to quantify different levels of H2O2 in milk samples, proving the potential of HbGp/Nafion/GCE for this purpose.
Assuntos
Peróxido de Hidrogênio , Oligoquetos , Animais , Hemoglobinas/química , Cinética , Oligoquetos/química , OxirreduçãoRESUMO
The outbreak of the COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome of Coronavirus 2 (SARS-CoV-2), has fueled the search for diagnostic tests aiming at the control and reduction of the viral transmission. The main technique used for diagnosing the Coronavirus disease (COVID-19) is the reverse transcription-polymerase chain reaction (RT-PCR) technique. However, considering the high number of cases and the underlying limitations of the RT-PCR technique, especially with regard to accessibility and cost of the test, one does not need to overemphasize the need to develop new and less expensive testing techniques that can aid the early diagnosis of the disease. With that in mind, we developed an ultrasensitive magneto-assay using magnetic beads and gold nanoparticles conjugated to human angiotensin-converting enzyme 2 (ACE2) peptide (Gln24-Gln42) for the capturing and detection of SARS-CoV-2 Spike protein in human saliva. The technique applied involved the use of a disposable electrochemical device containing eight screen-printed carbon electrodes which allow the simultaneous analysis of eight samples. The magneto-assay exhibited an ultralow limit of detection of 0.35 ag mL-1 for the detection of SARS-CoV-2 Spike protein in saliva. The magneto-assay was tested in saliva samples from healthy and SARS-CoV-2-infected individuals. In terms of efficiency, the proposed technique - which presented a sensitivity of 100.0% and specificity of 93.7% for SARS-CoV-2 Spike protein-exhibited great similarity with the RT-PCR technique. The results obtained point to the application potential of this simple, low-cost magneto-assay for saliva-based point-of-care COVID-19 diagnosis.
RESUMO
Glossoscolex paulistus hemoglobin structure is composed of 144 globin chains and 36 polypeptide chains lacking the heme group, with a total molecular mass of 3600â¯kDa. The current study focuses on the oxy-HbGp oligomeric stability, as a function of the storage time, at pHâ¯7.0, using dynamic light scattering, analytical ultracentrifugation (AUC), optical absorption and size exclusion chromatography (SEC). HbGp stored in Tris-HCl buffer, pHâ¯7.0, at 4⯰C, for two years remains in the native form, while 4-6â¯years HbGp stocks present typical hemichrome species absorption spectra. AUC and SEC analyses show that the contribution of HbGp-subunits, such as, dodecamer (abcd)3, tetramer abcd, trimer abc and monomer d, increases with the protein aging due to the lower stability of the HbGp with the time. The dissociation and the oxidation of the iron noted for the older protein solutions indicate that HbGp storage for periods of time longer than two years changes its ability to carry oxygen. Despite the reduction of HbGp stability and oxygen carrying capacity with aging, the protein stability is still larger as compared to mammalian hemoglobins. Thus, the extracellular hemoglobins are quite stable and resistant to the auto-oxidation process, making them of interest for biotechnological applications.