Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pak J Med Sci ; 40(4): 782-784, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545008

RESUMO

We identified the PACS2 gene responsible for the multifunctional sorting protein that play a role in nuclear gene expression as well as pathway traffic regulation. Diseases associated with PACS2 include early infantile epileptic encephalopathy (EIEE66), alacrima, achalasia, and mental retardation syndrome. Whole exome sequencing (WES) technique was used for the identification of variants that may lead to the disease. We identified a consanguineous Saudi family segregating developmental delay, mental retardation and epilepsy. Our results showed a heterozygous missense variant PACS2 gene leading to intellectual disability, epilepsy and cause epileptic encephalopathies (EIEE66) disorder. WES data was analyzed and identified variants were further confirmed by Sanger sequencing validation technique. We identified a heterozygous missense c.625G>A p.Glu209Lys in exon-6 of PACS2. The detected heterozygous mutation in the exon-6 region of PACS2 gene change the protein features and may cause disease. Further, explain the possibility that PACS2 gene play important role to cause intellectual disability, epilepsy and epileptic encephalopathies in this Saudi family.

3.
Clin Neurol Neurosurg ; 240: 108271, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569247

RESUMO

Vacuolar protein sorting 13 homolog D (VPS13D) gene encodes a protein involved in trafficking of membrane proteins between the trans-Golgi network and the prevacuolar compartment. This study reports a novel homozygous mutation (c.12494T>C p.Ile4165Thr) in the VPS13D gene in a Saudi female diagnosed with autosomal recessive spinocerebellar ataxia type 4 (SCAR4). The patient's clinical presentation, including progressive weakness, ataxia, and numbness, aligns with SCAR4 characteristics. The comprehensive evaluation, comprising neurological examination, brain MRI, and genetic testing, revealed distinctive features consistent with autosomal recessive inheritance. The genetic mutation spectrum enrichment emphasizes the intricate interplay of genetic factors in SCAR4. Although no specific treatment exists, rehabilitation and supportive therapy remain central. The identified mutation contributes valuable insights for clinical management and genetic counseling, urging the ongoing collection of VPS13D gene mutation data to explore genotype-phenotype correlations in spinocerebellar ataxias. This study underscores the importance of multidisciplinary care and lays the foundation for future research directions in understanding and treating SCAR4.


Assuntos
Mutação , Proteínas , Ataxias Espinocerebelares , Humanos , Feminino , Arábia Saudita , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico por imagem , Mutação/genética , Proteínas de Transporte Vesicular/genética , Homozigoto , Adulto , Linhagem
4.
Biomed Rep ; 20(4): 67, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38476606

RESUMO

Partner and localiser of BRCA2 (PALB2), also known as FANCN, is a key tumour suppressor gene in maintaining genome integrity. Monoallelic mutations of PALB2 are associated with breast and overian cancers, while bi-allelic mutations cause Fanconi anaemia (FA). In the present study, whole exome sequencing (WES) identified a novel homozygous missense variant, NM_024675.3: c.3296C>G (p.Thr1099Arg) in PALB2 gene (OMIM: 610355) that caused FA with mild pulmonary valve stenosis and dysmorphic and atypical features, including lymphangiectasia, non-immune hydrops fetalis and right-sided pleural effusion in a preterm female baby. WES results were further validated by Sanger sequencing. WES improves the screening and detection of novel and causative genetic variants to improve management of disease. To the best of our knowledge, the present study is the first reported FA case in a Saudi family with phenotypic atypical FA features. The results support the role of PALB2 gene and pathogenic variants that may cause clinical presentation of FA. Furthermore, the present results may establish a disease database, providing a groundwork for understanding the key genomic regions to control diseases resulting from consanguinity.

5.
Genes Genomics ; 46(4): 475-487, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38243045

RESUMO

BACKGROUND: ATP1A3 is a gene that encodes the ATPase Na + /K + transporting subunit alpha-3 isoenzyme that is widely expressed in GABAergic neurons. It maintains metabolic balance and neurotransmitter movement. These pathways are essential for the proper functioning of the nervous system. A mutation in the ATP1A3 gene demonstrates remarkable genotype-phenotype heterogeneity. OBJECTIVES: To provide insight into patients with ATP1A3 mutation. MATERIAL AND METHODS: These cases were identified using next generation sequencing. The patients' clinical and genetic data were retrieved. Detailed revision of the literature was conducted to illustrate and compare findings. The clinical, genetical, neuroimaging, and electrophysiological data of all pediatric patients were extracted. RESULTS: The study included 14 females and 12 males in addition to two novel females cases. Their mean current age is 6.3 ± 4.24 years. There were 11.54% preterm pregnancies with 5 cases reporting pregnancy complications. Mean age of seizure onset was 1.07 ± 1.06 years. Seizure semiology included generalized tonic-clonic, staring spells, tonic-clonic, and others. Levetiracetam was the most frequently used Anti-seizure medication. The three most frequently reported classical symptoms included alternating hemiplegia of childhood (50%), cerebellar ataxia (50%), and optic atrophy (23.08%). Non-classical symptoms included dystonia (73.08%), paroxysmal dyskinesias (34.62%), and encephalopathy (26.92%). Developmental delay was reported among 84.62% in cognitive, 92.31% in sensorimotor, 80.77% in speech, and 76.92% in socioemotional. EEG and MRI were non-specific. CONCLUSION: Our study demonstrated high heterogeneity among patients with pathogenic variants in the ATP1A3 gene. Such variation is multifactorial and can be a predisposition of wide genetic and clinical variables. Many patients shared few similarities in their genetic map including repeatedly reported de novo, heterozygous, mutations in the gene. Clinically, higher females prevalence of atypical presentation was noted. These findings are validated with prior evidence and the comprehensive analysis in this study.


Assuntos
Convulsões , ATPase Trocadora de Sódio-Potássio , Masculino , Feminino , Recém-Nascido , Humanos , Criança , Lactente , Pré-Escolar , Fenótipo , Mutação , Genótipo , ATPase Trocadora de Sódio-Potássio/genética
6.
Immunol Lett ; : 106908, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151731

RESUMO

Mast cells are multifaceted cells localized in tissues and possess various surface receptors that allow them to respond to inner and external threat signals. Interleukin-33 (IL-33) is a cytokine released by structural cells in response to parasitic infections, mechanical damage, and cell death. IL-33 can activate mast cells, causing them to release an array of mediators. This study aimed to identify the different cytokines released by human cord blood-derived mast cells (hCBMCs) in response to acute and prolonged stimulation with IL-33. For this purpose, a hCBMC model was established and stimulated with 10 ng and 20 ng of recombinant human IL-33 (rhIL-33) for 6 h and 24 h. Total RNA was hybridized using a high-density oligonucleotide microarray. A multiplex assay was performed to assess the released cytokines. Acute exposure to rhIL-33 increased the expression of IL-1α, IL-1ß, IL-6, and IL-13, whereas prolonged exposure increased the expression of IL-5 and IL-10, and cytokines were detected in the culture supernatant. WebGestalt analysis revealed that rhIL-33 induces pathways and biological processes related to the immune system and the acute inflammatory response. This study demonstrates that rhIL-33 can activate hCBMCs to release pro- and anti-inflammatory cytokines, eliciting distinct acute and prolonged responses unique to hCBMCs.

7.
Bioinformation ; 20(5): 415-429, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132229

RESUMO

Congenital heart disease (CHD) encompasses a diverse range of structural and functional anomalies that affect the heart and the major blood vessels. Epidemiological studies have documented a global increase in CHD prevalence, which can be attributed to advancements in diagnostic technologies. Extensive research has identified a plethora of CHD-related genes, providing insights into the biochemical pathways and molecular mechanisms underlying this pathological state. In this review, we discuss the advantages and challenges of various In vitro and in vivo CHD models, including primates, canines, Xenopus frogs, rabbits, chicks, mice, Drosophila, zebrafish, and induced pluripotent stem cells (iPSCs). Primates are closely related to humans but are rare and expensive. Canine models are costly but structurally comparable to humans. Xenopus frogs are advantageous because of their generation of many embryos, ease of genetic modification, and cardiac similarity. Rabbits mimic human physiology but are challenging to genetically control. Chicks are inexpensive and simple to handle; however, cardiac events can vary among humans. Mice differ physiologically, while being evolutionarily close and well-resourced. Drosophila has genes similar to those of humans but different heart structures. Zebrafish have several advantages, including high gene conservation in humans and physiological cardiac similarities but limitations in cross-reactivity with mammalian antibodies, gene duplication, and limited embryonic stem cells for reverse genetic methods. iPSCs have the potential for gene editing, but face challenges in terms of 2D structure and genomic stability. CRISPR-Cas9 allows for genetic correction but requires high technical skills and resources. These models have provided valuable knowledge regarding cardiac development, disease simulation, and the verification of genetic factors. This review highlights the distinct features of various models with respect to their biological characteristics, vulnerability to developing specific heart diseases, approaches employed to induce particular conditions, and the comparability of these species to humans. Therefore, the selection of appropriate models is based on research objectives, ultimately leading to an enhanced comprehension of disease pathology and therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA