Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 301(5): G856-64, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21836055

RESUMO

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a negative regulator of phosphatidylinositol 3-kinase (PI3K) signaling that is frequently inactivated in colorectal cancer through mutation, loss of heterozygosity, or epigenetic mechanisms. The aim of this study was to determine the effect of intestinal-specific PTEN inactivation on intestinal epithelial homeostasis and tumorigenesis. PTEN was deleted specifically in the intestinal epithelium, by crossing PTEN(Lox/Lox) mice with villin(Cre) mice. PTEN was robustly expressed in the intestinal epithelium and maximally in the differentiated cell compartment. Targeted inactivation of PTEN in the intestinal epithelium of PTEN(Lox/Lox)/villin(Cre) mice was confirmed by genotyping, immunohistochemistry, and qPCR. While intestinal-specific PTEN deletion did not have a major effect on cell fate determination or proliferation in the small intestine, it did increase phosphorylated (p) protein kinase B (AKT) expression in the intestinal epithelium, and 19% of animals developed small intestinal adenomas and adenocarcinomas at 12 mo of age. These tumors demonstrated pAKT and nuclear ß-catenin staining, indicating simultaneous activation of the PI3K/AKT and Wnt signaling pathways. These findings demonstrate that, while PTEN inactivation alone has a minimal effect on intestinal homeostasis, it can facilitate tumor promotion upon deregulation of ß-catenin/TCF signaling, further establishing PTEN as a bona fide tumor suppressor gene in intestinal cancer.


Assuntos
Adenocarcinoma/metabolismo , Adenoma/metabolismo , Células Epiteliais/metabolismo , Neoplasias Intestinais/metabolismo , Intestino Delgado/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenoma/genética , Adenoma/patologia , Animais , Células Epiteliais/patologia , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Intestino Delgado/patologia , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
2.
Cancer Res ; 70(2): 609-20, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20068171

RESUMO

Histone deacetylase inhibitors (HDACi) induce growth arrest and apoptosis in colon cancer cells and are being considered for colon cancer therapy. The underlying mechanism of action of these effects is poorly defined with both transcription-dependent and -independent mechanisms implicated. We screened a panel of 30 colon cancer cell lines for sensitivity to HDACi-induced apoptosis and correlated the differences with gene expression patterns induced by HDACi in the five most sensitive and resistant lines. A robust and reproducible transcriptional response involving coordinate induction of multiple immediate-early (fos, jun, egr1, egr3, atf3, arc, nr4a1) and stress response genes (Ndrg4, Mt1B, Mt1E, Mt1F, Mt1H) was selectively induced in HDACi sensitive cells. Notably, a significant percentage of these genes were basally repressed in colon tumors. Bioinformatics analysis revealed that the promoter regions of the HDACi-induced genes were enriched for KLF4/Sp1/Sp3 transcription factor binding sites. Altering KLF4 levels failed to modulate apoptosis or transcriptional responses to HDACi treatment. In contrast, HDACi preferentially stimulated the activity of Spl/Sp3 and blocking their action attenuated both the transcriptional and apoptotic responses to HDACi treatment. Our findings link HDACi-induced apoptosis to activation of a Spl/Sp3-mediated response that involves derepression of a transcriptional network basally repressed in colon cancer.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Precoces/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp3/genética , Apoptose/genética , Apoptose/fisiologia , Sítios de Ligação , Butiratos/farmacologia , Células CACO-2 , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Dactinomicina/farmacologia , Células HCT116 , Células HT29 , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Regiões Promotoras Genéticas , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/metabolismo , Ativação Transcricional
3.
Cancer Res ; 69(19): 7811-8, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19789347

RESUMO

Colorectal cancers (CRC) with microsatellite instability (MSI) have clinical, pathologic, genetic, and epigenetic features distinct from microsatellite-stable CRC. Examination of epidermal growth factor receptor (EGFR) mRNA and protein expression levels in a panel of colon cancer cell lines identified strong expression of EGFR in multiple cell lines with MSI. Although no relationship between EGFR overexpression and the length of a CA dinucleotide repeat in intron 1 was observed, a variant A13/A14 repeat sequence within the 3'-untranslated region (3'-UTR) of the EGFR gene was identified, which was mutated by either mononucleotide or dinucleotide adenosine deletions in 64% of MSI cell lines and 69% of MSI colon tumors. Using a Tet-Off system, we show that this mutation increases EGFR mRNA stability in colon cancer cells, providing a mechanistic basis for EGFR overexpression in MSI colon cancer cell lines. To determine whether this mutation is a driver or a bystander event in MSI colon cancer, we examined the effect of pharmacologic and molecular inhibition of EGFR in EGFR 3'-UTR mutant MSI cell lines. Cell lines with an EGFR 3'-UTR mutation and that were wild-type (WT) for downstream signaling mediators in the Ras/BRAF and PIK3CA/PTEN pathways were sensitive to EGFR inhibition, whereas those harboring mutations in these signaling mediators were not. Furthermore, in cell lines WT for downstream signaling mediators, those with EGFR 3'-UTR mutations were more sensitive to EGFR inhibition than EGFR 3'-UTR WT cells, suggesting that this mutation provides a growth advantage to this subset of MSI colon tumors.


Assuntos
Neoplasias do Colo/genética , Receptores ErbB/biossíntese , Genes erbB-1 , Mutação , Poli A/genética , Sequências Repetitivas de Ácido Nucleico , Regiões 3' não Traduzidas , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/enzimologia , Receptores ErbB/genética , Amplificação de Genes , Humanos , Camundongos , Camundongos SCID , Instabilidade de Microssatélites , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ribonuclease III/antagonistas & inibidores , Ribonuclease III/genética , Deleção de Sequência
4.
Mol Nutr Food Res ; 52(11): 1289-99, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18435490

RESUMO

To identify candidate genes involved in the development of colorectal cancer, we used cDNA microarrays to analyze gene expression differences between human colorectal tumors and paired adjacent normal mucosa. We identified approximately 3.5-fold significant downregulation of selenium-binding protein 1 (SBP1) in colorectal tumors compared to normal mucosa (p = 0.003). Importantly, stage III colorectal cancer patients with low tumor-SBP1 expression had significantly shorter disease-free and overall survival as compared with those patients with high tumor-SBP1 expression (p = 0.04 and 0.03, respectively). We further characterized the role of SBP1 in colorectal cancer in vivo and in vitro. In normal tissue, SBP1 was maximally expressed in terminally differentiated epithelial cells on the luminal surface of crypts in the large intestine. Consistent with this in vivo localization, SBP1 was upregulated during in vitro colonic cell differentiation along the absorptive (Caco-2) and secretory (HT29 Clones 16E and 19A) cell lineages. Downregulation (approximately 50%) of SBP1 expression by small interfering RNA in colonic cancer cells was associated with reduced expression of another epithelial differentiation marker, carcinoembryonic antigen (CEA), although PCNA and p21(WAF1/cip1 )expression were not altered. These data demonstrate that higher expression of SBP1 is associated with differentiation of the normal colonic epithelia and may be a positive prognostic factor for survival in stage III colorectal carcinoma.


Assuntos
Neoplasias Colorretais/genética , Intestinos/fisiopatologia , Proteínas de Ligação a Selênio/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias Colorretais/patologia , Humanos , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiopatologia , Intestinos/patologia , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , RNA Interferente Pequeno/genética , Neoplasias Retais/genética , Proteínas de Ligação a Selênio/metabolismo , Sobreviventes
5.
Mol Biol Cell ; 19(10): 4062-75, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18632985

RESUMO

The class II Histone deacetylase (HDAC), HDAC4, is expressed in a tissue-specific manner, and it represses differentiation of specific cell types. We demonstrate here that HDAC4 is expressed in the proliferative zone in small intestine and colon and that its expression is down-regulated during intestinal differentiation in vivo and in vitro. Subcellular localization studies demonstrated HDAC4 expression was predominantly nuclear in proliferating HCT116 cells and relocalized to the cytoplasm after cell cycle arrest. Down-regulating HDAC4 expression by small interfering RNA (siRNA) in HCT116 cells induced growth inhibition and apoptosis in vitro, reduced xenograft tumor growth, and increased p21 transcription. Conversely, overexpression of HDAC4 repressed p21 promoter activity. p21 was likely a direct target of HDAC4, because HDAC4 down-regulation increased p21 mRNA when protein synthesis was inhibited by cycloheximide. The importance of p21 repression in HDAC4-mediated growth promotion was demonstrated by the failure of HDAC4 down-regulation to induce growth arrest in HCT116 p21-null cells. HDAC4 down-regulation failed to induce p21 when Sp1 was functionally inhibited by mithramycin or siRNA-mediated down-regulation. HDAC4 expression overlapped with that of Sp1, and a physical interaction was demonstrated by coimmunoprecipitation. Chromatin immunoprecipitation (ChIP) and sequential ChIP analyses demonstrated Sp1-dependent binding of HDAC4 to the proximal p21 promoter, likely directed through the HDAC4-HDAC3-N-CoR/SMRT corepressor complex. Consistent with increased transcription, HDAC4 or SMRT down-regulation resulted in increased histone H3 acetylation at the proximal p21 promoter locus. These studies identify HDAC4 as a novel regulator of colon cell proliferation through repression of p21.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases/fisiologia , Proteínas Repressoras/fisiologia , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo , Humanos , Masculino , Camundongos , Camundongos SCID , Modelos Biológicos , Transplante de Neoplasias , RNA Interferente Pequeno/metabolismo
6.
Cancer Res ; 68(6): 1953-61, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18339877

RESUMO

Cetuximab is a monoclonal antibody that targets the human epidermal growth factor receptor (EGFR). Although approved for use in EGFR-overexpressing advanced colorectal cancer, recent studies have shown a lack of association between EGFR overexpression and cetuximab response, requiring the identification of novel biomarkers predictive of response to this agent. To do so, 22 colon cancer cell lines were screened for cetuximab response in vitro and sensitive and resistant lines were identified. In sensitive cell lines, cetuximab induced a G(0)-G(1) arrest without inducing apoptosis. Notably, cetuximab-sensitive but not cetuximab-resistant cell lines were preferentially responsive to EGF-stimulated growth. Whereas neither EGFR protein/mRNA expression nor gene copy number correlated with cetuximab response, examination of the mutation status of signaling components downstream of EGFR showed that cell lines with activating PIK3CA mutations or loss of PTEN expression (PTEN null) were more resistant to cetuximab than PIK3CA wild type (WT)/PTEN-expressing cell lines (14 +/- 5.0% versus 38.5 +/- 6.4% growth inhibition, mean +/- SE; P = 0.008). Consistently, PIK3CA mutant isogenic HCT116 cells showed increased resistance to cetuximab compared with PIK3CA WT controls. Furthermore, cell lines that were PIK3CA mutant/PTEN null and Ras/BRAF mutant were highly resistant to cetuximab compared with those without dual mutations/PTEN loss (10.8 +/- 4.3% versus 38.8 +/- 5.9% growth inhibition, respectively; P = 0.002), indicating that constitutive and simultaneous activation of the Ras and PIK3CA pathways confers maximal resistance to this agent. A priori screening of colon tumors for PTEN expression status and PIK3CA and Ras/BRAF mutation status could help stratify patients likely to benefit from this therapy.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Mutação , PTEN Fosfo-Hidrolase/biossíntese , Fosfatidilinositol 3-Quinases/genética , Anticorpos Monoclonais Humanizados , Linhagem Celular Tumoral , Cetuximab , Classe I de Fosfatidilinositol 3-Quinases , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/biossíntese , Receptores ErbB/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib , Fase G1/efeitos dos fármacos , Dosagem de Genes , Genes ras , Células HCT116 , Humanos , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas B-raf/genética , Quinazolinas/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Proteínas ras/genética
7.
J Proteomics ; 71(5): 530-46, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-18824147

RESUMO

Intestinal epithelial cells undergo progressive cell maturation as they migrate along the crypt-villus axis. To determine molecular signatures that define this process, proteins differentially expressed between the crypt and villus were identified by 2D-DIGE and MALDI-MS. Forty-six differentially expressed proteins were identified, several of which were validated by immunohistochemistry. Proteins upregulated in the villus were enriched for those involved in brush border assembly and lipid uptake, established features of differentiated intestinal epithelial cells. Multiple proteins involved in glycolysis were also upregulated in the villus, suggesting increased glycolysis is a feature of intestinal cell differentiation. Conversely, proteins involved in nucleotide metabolism, and protein processing and folding were increased in the crypt, consistent with functions associated with cell proliferation. Three novel paneth cell markers, AGR2, HSPA5 and RRBP1 were also identified. Notably, significant correlation was observed between overall proteomic changes and corresponding gene expression changes along the crypt-villus axis, indicating intestinal cell maturation is primarily regulated at the transcriptional level. This proteomic profiling analysis identified several novel proteins and functional processes differentially induced during intestinal cell maturation in vivo. Integration of proteomic, immunohistochemical, and parallel gene expression datasets demonstrate the coordinated manner in which intestinal cell maturation is regulated.


Assuntos
Mucosa Intestinal/fisiologia , Intestino Delgado/fisiologia , Proteômica , Animais , Corantes , Eletroforese em Gel Bidimensional , Chaperona BiP do Retículo Endoplasmático , Enzimas/química , Enzimas/genética , Enzimas/isolamento & purificação , Regulação da Expressão Gênica , Mucosa Intestinal/química , Mucosa Intestinal/citologia , Intestino Delgado/química , Intestino Delgado/citologia , Lipídeos/fisiologia , Camundongos , Proteínas/química , Proteínas/genética , Proteínas/isolamento & purificação , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Esteroides/metabolismo
8.
Gastroenterology ; 133(1): 232-43, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17631145

RESUMO

BACKGROUND & AIMS: Reduced p27(kip1) expression is a marker of poor prognosis in colorectal neoplasia, and inactivation of p27 in mice (p27(Delta51/Delta51)) causes increased intestinal epithelial cell proliferation and small and large intestinal neoplasia in a diet-dependent manner. Here, we addressed the role of p27 in untransformed intestinal epithelial cells in vivo and the consequence of its targeted inactivation. METHODS: A sequential fractionation procedure was used to isolate murine intestinal epithelial cells relative to their position along the crypt-villus axis, and the levels of cyclins, cyclin-dependent kinases (cdks), and cdk inhibitors and of the complexes formed among them was determined by immunoprecipitation-immunoblotting and kinase assays. RESULTS: As cells exited the proliferative crypt compartment, expression and activity of both cdk2 and cdk4 decreased, in parallel with reduced expression of cyclin A and proliferating cell nuclear antigen (PCNA); expression of cyclin D1, D2, and cyclin E showed little change. As expected, expression of the cdk inhibitors p21, p57, and p16 was highest in differentiated villus cells. Unexpectedly, p27 protein expression was highest in cells of the proliferative crypt compartment where it bound both cdk2 and cdk4. Cdk2 activity was increased in crypt cells from p27(Delta51/Delta51) mice, although cyclin D-associated kinase activity was unchanged (indeed, cyclin D1/2-cdk4 complex levels were reduced). Importantly, cdk2 activity was unchanged in crypt cells from p21(-/-) mice, which do not develop intestinal tumors. CONCLUSIONS: We propose that p27 contributes to intestinal epithelial homeostasis by regulating cdk2 activity in proliferating cells, thus gating cell cycle progression and suppressing intestinal neoplasia.


Assuntos
Neoplasias do Colo/patologia , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Mucosa Intestinal/patologia , Animais , Divisão Celular/fisiologia , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Ciclina D , Ciclina E/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Ciclinas/metabolismo , Feminino , Fase G1/fisiologia , Genótipo , Homeostase/fisiologia , Humanos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Fase S/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA