Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 829, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788217

RESUMO

The evolution and driving mechanism of the South Asian summer monsoon (SASM) are still poorly understood. We here present a 12-Myr long SASM record by analyzing the strontium and neodymium isotopic composition of detrital components at IODP Exp. 359 Site U1467 from the northern Indian Ocean. The provenance investigation demonstrates that more dust enriched in εNd from northeastern Africa and the Arabian Peninsula was transported to the study site by monsoonal and Shamal winds during the summer monsoon season. A two-step weakening of the SASM wind since ~12 Ma is proposed based on the εNd record. This observational phenomenon is supported by climate modeling results, demonstrating that the SASM evolution was mainly controlled by variations in the gradient between the Mascarene High and the Indian Low, associated with meridional shifts of the Hadley Cell and the Intertropical Convergence Zone, which were caused by interhemispheric ice-sheet growth since the Middle Miocene.

2.
Environ Monit Assess ; 184(5): 2829-44, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21688032

RESUMO

An area of 0.6 km(2) in the manganese nodule field of the Central Indian Basin was physically disturbed and sediments discharged in the near bottom waters to simulate seabed mining and study its impact on benthic ecosystem. An estimated 2 to 3 tonnes of sedimentary organic carbon (C(org)) was resuspended into the water column during a 9-day experiment. The majority of the sediment cores from within the disturbed area and areas towards the south showed a ~30% increase in C(org) content as well as an increase in carbon burial rates after disturbance, though with a reduction in carbon/phosphorus ratios. High specific surface area (SSA~25 m(2) g(-1)) and low C(org)/SSA ratios (mostly <0.5) are typical of deep-sea sediments. The increased C(org) values were probably due to the organic matter from dead biota and the migration and redeposition of fine-grained, organic-rich particles. Spatial distribution patterns of C(org) contents of cores taken before and after disturbance were used to infer the direction of plume migration and re-sedimentation. A positive relationship was observed between total and labile C(org) and macrobenthos density and total bacterial numbers prior to disturbance, whereas a negative relationship was seen after disturbance owing to drastic reduction in the density of macrofauna and bacteria. Overall decrease in labile organic matter, benthic biota and redistribution of organic matter suggest that the commercial mining of manganese nodules may have a significant immediate negative effect on the benthic ecosystem inducing changes in benthic community structure.


Assuntos
Carbono/análise , Sedimentos Geológicos/química , Água do Mar/química , Poluentes Químicos da Água/análise , Ecossistema , Monitoramento Ambiental , Oceano Índico , Modelos Químicos , Fósforo/análise , Poluição Química da Água/estatística & dados numéricos
3.
Sci Total Environ ; 760: 143833, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33348165

RESUMO

India is industrializing rapidly and with this there comes higher releases of contaminants into the environment. Change in Pb deposition over the last century on the eastern (off Andhra Pradesh) and western (off Karnataka) shelves of India was investigated based on the data extracted from two sediment cores covering the past ~114 and ~145 yrs. The variations of the total Pb content, its enrichment factor, and concentrations of non-residual Pb in both the sediment cores document that there was a gradual increase in anthropogenic Pb input into the coastal sediments of India over the last century. Sediment leachates were used to monitor the increase in anthropogenic Pb input and its Pb isotope composition. The anthropogenic end member composition of the western shelf sediment location (206Pb/207Pb: 1.105; 206Pb/208Pb: 2.149) was significantly less radiogenic than the eastern shelf isotopic composition (206Pb/207Pb: 1.145; 206Pb/208Pb:2.120). A binary mixing model suggests that Pb emitted from the heavy industries (e.g., ore mining, Pb processing and smelting plants) of India has been the major source of anthropogenic Pb to the sediments of western continental shelf. In contrast, the isotopic signatures suggest that coal combustion is responsible for elevated anthropogenic Pb levels in the sediments from the eastern shelf of India.

4.
Mar Pollut Bull ; 54(6): 708-19, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17376489

RESUMO

The macro-tidal Gulf of Kachchh, covering nearly 7000 km(2), is located about 150 km south of the Indus River mouth. In spite of semi-arid climate and lack of major rivers flowing into it, the Gulf is highly turbid with suspended sediment concentrations (SSC) during October-November 2002 ranging between 0.5 and 674 mgl(-1). Highly turbid waters are observed towards the northern portion of the mouth of the Gulf, at the head of the Gulf and adjacent to the numerous shoals present within the Gulf. Perennial high SSC in the Gulf is due to resuspension of sediments by strong tidal currents, shallow bathymetry and presence of fine-grained sediments on the sea floor. Numerical model studies show that there is a dynamic barrier in the central Gulf, which prevents the exchange of water and suspended sediments between the outer and inner Gulf. This dynamic barrier associated with strong east-west tidal currents restricts the turbid waters mainly to the northern Gulf, resulting in relatively clear waters (SSC<10 mgl(-1)) in the southern and central portions of the Gulf. Laser particle size distribution, clay mineralogy and geochemistry of the suspended matter show that the main source of sediments to the Gulf of Kachchh is the Indus River. Although the Indus discharge has been severely curtailed in the recent decades due to construction of numerous dams and barrages, the Gulf of Kachchh continues to receive resuspended sediments from the numerous meso and macro-tidal creeks of the Indus delta. The sediments at the head of the Gulf appear to be a mixture of sediments derived from the Indus as well as the numerous seasonal rivers draining the Rann of Kachchh.


Assuntos
Sedimentos Geológicos/análise , Água do Mar/química , Movimentos da Água , Sedimentos Geológicos/química , Índia , Modelos Teóricos , Oceanos e Mares , Tamanho da Partícula
5.
Mar Pollut Bull ; 114(2): 805-815, 2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-27842714

RESUMO

Environmental magnetic and geochemical analyses combined with 210Pb dating were carried out on a sediment core off Goa from Arabian Sea to reconstruct the sedimentation history of last three and a half centuries and to investigate the impact of onshore iron ore mining on the offshore sedimentation. A drastic increase in sedimentation rate and mineral magnetic concentration parameters divides the core into two units (1 & 2) at a depth of 41cm (1982CE). The high magnetic susceptibility values in Unit 1 sediments are coeval with increased iron ore production on land and illustrate the role of terrestrial mining on the increased offshore sedimentation. The early diagenetic signals were observed in Unit 2 of the core with low concentration parameters, coarse magnetic grain size and magnetically hard mineralogy. The geochemical data of the core also record the Little Ice Age (LIA) climatic events of Dalton and Maunder solar minima.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Ferro/análise , Mineração , Atividades Humanas , Índia , Radioisótopos de Chumbo/análise , Fenômenos Magnéticos , Minerais/análise , Mineração/métodos , Datação Radiométrica
6.
Sci Rep ; 7: 44310, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28303943

RESUMO

Chemical weathering and the ensuing atmospheric carbon dioxide consumption has long been considered to work on geological time periods until recently when some modelling and natural records have shown that the weathering-related CO2 consumption can change at century to glacial-interglacial time scale. Last glacial to interglacial transition period is a best test case to understand the interplay between Pco2-temperature-chemical weathering when a pulse of rapid chemical weathering was initiated. Here we show, from a high resolution 54 ka record from the Andaman Sea in the northern Indian Ocean, that the chemical weathering responds to deglacial to mid-Holocene summer monsoon intensification in the Myanmar watersheds. The multi-proxy data (Al/K, CIA, Rb/Sr, 87Sr/86Sr for degree of weathering and 143Nd/144Nd for provenance) reveal an increase in silicate weathering with initiation of interglacial warm climate at ~17.7 ka followed by a major change at 15.5 ka. Inferred changes in chemical weathering have varied in tandem with the regional monsoonal proxies (δ18Osw-salinity changes of Northern Indian Ocean, effective Asian moisture content and δ18O records of Chinese caves) and are synchronous with changes in summer insolation at 30°N and δ18O of GISP2 implying that chemical weathering was not a later amplifier but worked in tandem with global climate change.

7.
Life Sci Space Res (Amst) ; 12: 39-50, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28212707

RESUMO

Red clays of Central Indian Basin (CIB) under influence of trace of Rodriguez Triple Junction exhibited chemoautotrophy, low temperature hydrothermal alterations and photoautotrophic potential. Seamount flank TVBC-08, hosting such signatures revealed dominance of aerobic anoxygenic phototroph Erythrobacter, with 93% of total 454 pyrosequencing tags. Subsequently, enrichments for both aerobic (Erythrobacter) and anaerobic anoxygenic phototrophs (green and purple sulphur bacteria) under red and white LED light illumination, with average irradiance 30.66Wm-2, were attempted for three red-clay sediment cores. Successful enrichments were obtained after incubation for c.a. 120 days at 4°± 2°C and 25°± 2°C, representing ambient psychrophilic and low temperature hydrothermal alteration conditions respectively. During hydrothermal cooling, a microbial succession from anaerobic chemolithotrophy to oxygenic photoautotrophy through anaerobic/aerobic anoxygenic phototrophic microbes is indicated. Spectral absorbance patterns of the methanol extracted cell pellets showed peaks corresponding to metal sulphide precipitations, the Soret band of chlorosome absorbance by photosystem II and absence of peaks at Qy transition band. Dendritic nano-structures of metal sulphides are common in these sediments and are comparable with other sulphidic paleo-marine Martian analogues. Significant blue and redshifts have been observed for the experimental samples relative to the un-inoculated medium. These observations indicate the propensity of metal-sulphide deposits contributing to chemiluminiscence supporting the growth of phototrophs at least partially, in the otherwise dark abyss. The effects of other geothermal heat and light sources are also under further consideration. The potential of phototrophic microbial cells to exhibit Doppler shift in absorbance patterns is significant towards understanding planetary microbial habitability. Planetary desiccation could considerably influence Doppler effects and consequently spectral detection techniques exo-planetary microbial life.


Assuntos
Silicatos de Alumínio/efeitos da radiação , Bactérias/metabolismo , Exobiologia , Fotossíntese/efeitos da radiação , Processos Fototróficos , Argila , Luz , Oceanos e Mares , Sulfetos/química , Microbiologia da Água
8.
Environ Sci Pollut Res Int ; 23(4): 3450-62, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26490921

RESUMO

Distribution of metals in different binding phases of estuarine sediments provides chemically significant description of metal-sediment interactions. This study describes the influences of ligand field stabilization energy (LFSE), Jahn-Teller effect, and water exchange rate (k-w) on metal distribution in different binding phases of estuarine sediments. It was found that Cu had highest affinity for organic binding phases in the studied sediments followed by Ni and Pb. However, Pb showed strong association with Fe/Mn oxide phases followed by Ni and Cu. Faster k-w of Cu (II) (1 × 10(9) s(-1)) increased the rate of complex formation of Cu(2+) ion with ligand in the organic phases. The Cu-ligand (from organic phase) complexes gained extra stability by the Jahn-Teller effect. The combined effects of these two phenomena and high ionic potential increased the association of Cu with the organic phases of the sediments than Ni and Pb. The smaller ionic radii of Ni(2+) (0.72 Å) than Pb(2+) (1.20 Å) increase the stability of Ni-ligand complexes in the organic phase of the sediments. High LFSE of Ni(II) (compared with Pb(2+) ions) also make Ni-organic complexes increasingly stable than Pb. High k-w (7 × 10(9) s(-1)) of Pb did not help it to associate with organic phases in the sediments. The high concentration of Pb in the Fe/Mn oxyhydroxide binding phase was probably due to co-precipitation of Pb(2+) and Fe(3+). High surface area or site availability for Pb(2+) ion on Fe oxyhydroxide phase was probably responsible for the high concentration of Pb in Fe/Mn oxyhydroxide phase. Increasing concentrations of Cu in organic phases with the increasing Cu loading suggest that enough binding sites were available for Cu in the organic binding phases of the sediments. This study also describes the influence of nature of sedimentary organic carbon (terrestrial and marine derived OC) in controlling these metal distribution and speciation in marine sediment.


Assuntos
Sedimentos Geológicos/química , Metais/química , Poluentes Químicos da Água/química , Compostos Orgânicos/química , Óxidos/química
9.
Sci Total Environ ; 566-567: 1052-1061, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27267721

RESUMO

This study describes the effect of varying bottom-water oxygen concentration on geochemical fractionation (operational speciation) of Cu and Pb in the underneath sediments across the oxygen minimum zone (Arabian Sea) in the west coast of India. Both, Cu and Pb were redistributed among the different binding phases of the sediments with changing dissolved oxygen level (from oxic to hypoxic and close to suboxic) in the bottom water. The average lability of Cu-sediment complexes gradually decreased (i.e., stability increased) with the decreasing dissolved oxygen concentrations of the bottom water. Decreasing bottom-water oxygen concentration increased Cu association with sedimentary organic matter. However, Pb association with Fe/Mn-oxyhydroxide phases in the sediments gradually decreased with the decreasing dissolved oxygen concentration of the overlying bottom water (due to dissolution of Fe/Mn oxyhydroxide phase). The lability of Pb-sediment complexes increased with the decreasing bottom-water oxygen concentration. This study suggests that bottom-water oxygen concentration is one of the key factors governing stability and lability of Cu and Pb complexes in the underneath sediment. Sedimentary organic matter and Fe/Mn oxyhydroxide binding phases were the major hosting phases for Cu and Pb respectively in the study area. Increasing lability of Pb-complexes in bottom sediments may lead to positive benthic fluxes of Pb at low oxygen environment.

10.
Environ Sci Pollut Res Int ; 23(9): 8529-38, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26797942

RESUMO

Total Hg distributions and its speciation were determined in two sediment cores collected from the western continental marginal high of India. Total Hg content in the sediment was found to gradually increase (by approximately two times) towards the surface in both the cores. It was found that Hg was preferentially bound to sulfide under anoxic condition. However, redox-mediated reactions in the upper part of the core influenced the total Hg content in the sediment cores. This study suggests that probable increase in authigenic and allogenic Hg deposition attributed to the increasing Hg concentration in the surface sediment in the study area.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Mercúrio/análise , Poluentes Químicos da Água/análise , Índia , Água do Mar/química
11.
Mar Pollut Bull ; 97(1-2): 36-46, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26070957

RESUMO

This study describes the geochemical distribution of lead (Pb) and identifies the critical factors that significantly control Pb distribution and speciation in coastal and estuarine sediments around India by using published data from the literature. Crustal sources influence the abundance of Pb in coastal sediment from the south-east and central-west coast of India. Parts of north-east, north-west, and south-west coast of India were polluted by Pb. Distribution of Pb in sediments, from the north-east and north-west coasts of India, were controlled by Fe-Mn oxyhydroxide mineral phases of the sediments. However, organic carbon (OC) seemed to be a dominant factor in controlling the distribution of Pb in sediments from the central-east and south-west coasts of India. The outcome of this study may help in decision-making to predict the levels of Pb from natural and anthropogenic sources and to control Pb pollution in coastal and estuarine sediments around India.


Assuntos
Sedimentos Geológicos/análise , Chumbo/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Estuários , Índia , Oceanos e Mares
12.
Environ Pollut ; 194: 138-144, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25108489

RESUMO

The current study aims to understand the speciation and fate of Cu complexes in hydrothermally altered sediments from the Central Indian Ocean Basin and assess the probable impacts of deep-sea mining on speciation of Cu complexes and assess the Cu flux from this sediment to the water column in this area. This study suggests that most of the Cu was strongly associated with different binding sites in Fe-oxide phases of the hydrothermally altered sediments with stabilities higher than that of Cu-EDTA complexes. The speciation of Cu indicates that hydrothermally influenced deep-sea sediments from Central Indian Ocean Basin may not significantly contribute to the global Cu flux. However, increasing lability of Cu-sediment complexes with increasing depth of sediment may increase bioavailability and Cu flux to the global ocean during deep-sea mining.


Assuntos
Cobre/análise , Sedimentos Geológicos/química , Fontes Hidrotermais , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Oceano Índico , Mineração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA