Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Eur J Immunol ; : e2350716, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837757

RESUMO

Immune mediators affect multiple biological functions of intestinal epithelial cells (IECs) and, like Paneth and Paneth-like cells, play an important role in intestinal epithelial homeostasis. IFN-γ a prototypical proinflammatory cytokine disrupts intestinal epithelial homeostasis. However, the mechanism underlying the process remains unknown. In this study, using in vivo and in vitro models we demonstrate that IFN-γ is spontaneously secreted in the small intestine. Furthermore, we observed that this cytokine stimulates mitochondrial activity, ROS production, and Paneth and Paneth-like cell secretion. Paneth and Paneth-like secretion downstream of IFN-γ, as identified here, is mTORC1 and necroptosis-dependent. Thus, our findings revealed that the pleiotropic function of IFN-γ also includes the regulation of Paneth cell function in the homeostatic gut.

2.
Mol Microbiol ; 120(2): 178-193, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392318

RESUMO

Serine protease autotransporters of Enterobacteriaceae (SPATE) constitute a superfamily of virulence factors, resembling the trypsin-like superfamily of serine proteases. SPATEs accomplish multiple functions associated to disease development of their hosts, which could be the consequence of SPATE cleavage of host cell components. SPATEs have been divided into class-1 and class-2 based on structural differences and biological effects, including similar substrate specificity, cytotoxic effects on cultured cells, and enterotoxin activity on intestinal tissues for class-1 SPATEs, whereas most class-2 SPATEs exhibit a lectin-like activity with a predilection to degrade a variety of mucins, including leukocyte surface O-glycoproteins and soluble host proteins, resulting in mucosal colonization and immune modulation. In this review, the structure of class-1 and class-2 are analyzed, making emphasis on their putative functional subdomains as well as a description of their function is provided, including prototypical mechanism of action.


Assuntos
Proteínas de Escherichia coli , Serina Proteases , Serina Proteases/metabolismo , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Sistemas de Secreção Tipo V , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Células Cultivadas , Glicoproteínas de Membrana
3.
Environ Microbiol ; 24(3): 1035-1051, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34431194

RESUMO

The interaction of enteroaggregative Escherichia coli (EAEC) strains with the colonic gut mucosa is characterized by the ability of the bacteria to form robust biofilms, to bind mucin, and induce a local inflammatory response. These events are mediated by a repertoire of five different aggregative adherence fimbriae variants (AAF/I-V) typically encoded on virulence plasmids. In this study, we report the production in EAEC strains of a new YehD fimbriae (YDF), which is encoded by the chromosomal gene cluster yehABCD, also present in most E. coli strains. Immuno-labelling of EAEC strain 042 with anti-AAF/II and anti-YDF antibodies demonstrated the presence of both AAF/II and YDF on the bacterial surface. We investigated the role of YDF in cell adherence, biofilm formation, colonization of spinach leaves, and induction of pro-inflammatory cytokines release. To this aim, we constructed yehD deletion mutants in different EAEC backgrounds (strains 17-2, 042, 55989, C1010, 278-1, J7) each harbouring one of the five AAFs. The effect of the YDF mutation was strain dependent and AAF independent as the lack of YDF had a different impact on the phenotypes manifested by the different EAECs tested. Expression of the yehABCD operon in a E. coli K12 ORN172 showed that YDF is important for biofilm formation but not for adherence to HeLa cells. Lastly, screening of pro-inflammatory cytokines in supernatants of Caco-2 cells infected with EAEC strains 042 and J7 and their isogenic ΔyehD mutants showed that these mutants were significantly defective in release of IL-8 and TNF-α. This study contributes to the understanding of the complex and diverse mechanisms of adherence of EAEC strains and identifies a new potential target for preventive measures of gastrointestinal illness caused by EAEC and other E. coli pathogroups.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Aderência Bacteriana/genética , Células CACO-2 , Citocinas/metabolismo , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Células HeLa , Humanos , Virulência/genética
4.
BMC Med Ethics ; 22(1): 156, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34814901

RESUMO

BACKGROUND: Genetic/genomic testing (GGT) are useful tools for improving health and preventing diseases. Still, since GGT deals with sensitive personal information that could significantly impact a patient's life or that of their family, it becomes imperative to consider Ethical, Legal and Social Implications (ELSI). Thus, ELSI studies aim to identify and address concerns raised by genomic research that could affect individuals, their family, and society. However, there are quantitative and qualitative discrepancies in the literature to describe the elements that provide content to the ELSI studies and such problems may result in patient misinformation and harmful choices. METHODS: We analyzed the major international documents published by international organizations to specify the parameters that define ELSI and the recognized criteria for GGT, which may prove useful for researchers, health professionals and policymakers. First, we defined the parameters of the ethical, legal and social fields in GGT to avoid ambiguities when using the acronym ELSI. Then, we selected nine documents from 44 relevant publications by international organizations related to genomic medicine. RESULTS: We identified 29 ELSI sub-criteria concerning to GGT, which were organized and grouped within 10 minimum criteria: two from the ethical field, four from the legal field and four from the social field. An additional analysis of the number of appearances of these 29 sub-criteria in the analyzed documents allowed us to order them and to determine 7 priority criteria for starting to evaluate and propose national regulations for GGT. CONCLUSIONS: We propose that the ELSI criteria identified herein could serve as a starting point to formulate national regulation on personalized genomic medicine, ensuring consistency with international bioethical requirements.


Assuntos
Medicina Genômica , Genômica , Ética em Pesquisa , Genoma Humano , Humanos , Medicina de Precisão
5.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824881

RESUMO

ß-dystroglycan (ß-DG) assembles with lamins A/C and B1 and emerin at the nuclear envelope (NE) to maintain proper nuclear architecture and function. To provide insight into the nuclear function of ß-DG, we characterized the interaction between ß-DG and emerin at the molecular level. Emerin is a major NE protein that regulates multiple nuclear processes and whose deficiency results in Emery-Dreifuss muscular dystrophy (EDMD). Using truncated variants of ß-DG and emerin, via a series of in vitro and in vivo binding experiments and a tailored computational analysis, we determined that the ß-DG-emerin interaction is mediated at least in part by their respective transmembrane domains (TM). Using surface plasmon resonance assays we showed that emerin binds to ß-DG with high affinity (KD in the nanomolar range). Remarkably, the analysis of cells in which DG was knocked out demonstrated that loss of ß-DG resulted in a decreased emerin stability and impairment of emerin-mediated processes. ß-DG and emerin are reciprocally required for their optimal targeting within the NE, as shown by immunofluorescence, western blotting and immunoprecipitation assays using emerin variants with mutations in the TM domain and B-lymphocytes of a patient with EDMD. In summary, we demonstrated that ß-DG plays a role as an emerin interacting partner modulating its stability and function.


Assuntos
Distroglicanas/metabolismo , Proteínas de Membrana/metabolismo , Distrofia Muscular de Emery-Dreifuss/metabolismo , Proteínas Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Linfócitos B/metabolismo , Sítios de Ligação , Linhagem Celular , Células Cultivadas , Distroglicanas/química , Distroglicanas/genética , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Distrofia Muscular de Emery-Dreifuss/genética , Mutação , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica
6.
Infect Immun ; 84(7): 2012-2021, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27113356

RESUMO

Most autotransporter passenger domains, regardless of their diversity in function, fold or are predicted to fold as right-handed ß-helices carrying various loops that are presumed to confer functionality. Our goal here was to identify the subdomain (loop) or amino acid sequence of the Pet passenger domain involved in the receptor binding site on the host cell for Pet endocytosis. Here, we show that d1 and d2 subdomains, as well as the amino acid sequence linking the subdomain d2 and the adjacent ß-helix (PDWET), are not required for Pet secretion through the autotransporter system and that none of our deletion mutants altered the predicted long right-handed ß-helical structure. Interestingly, Pet lacking the d2 domain (PetΔd2) was unable to bind on the epithelial cell surface, in contrast to Pet lacking d1 (PetΔd1) subdomain or PDWET sequences. Moreover, the purified d1 subdomain, the biggest subdomain (29.8 kDa) containing the serine protease domain, was also unable to bind the cell surface. Thus, d2 sequence (54 residues without the PDWET sequence) was required for Pet binding to eukaryotic cells. In addition, this d2 sequence was also needed for Pet internalization but not for inducing cell damage. In contrast, PetΔd1, which was able to bind and internalize inside the cell, was unable to cause cell damage. Furthermore, unlike Pet, PetΔd2 was unable to bind cytokeratin 8, a Pet receptor. These data indicate that the surface d2 subdomain is essential for the ligand-receptor (Pet-Ck8) interaction for Pet uptake and to start the epithelial cell damage by this toxin.


Assuntos
Enterotoxinas/metabolismo , Células Epiteliais/metabolismo , Queratina-8/metabolismo , Domínios e Motivos de Interação entre Proteínas , Sistemas de Secreção Tipo V/metabolismo , Sítios de Ligação , Linhagem Celular , Membrana Celular/metabolismo , Enterotoxinas/química , Enterotoxinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Queratina-8/química , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Sistemas de Secreção Tipo V/genética
7.
J Infect Dis ; 212(1): 106-15, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25583166

RESUMO

Enteroaggregative and uropathogenic Escherichia coli, Shigella flexneri 2a, and the hybrid enteroaggregative/Shiga toxin-producing E. coli strain (O104:H4) are important pathogens responsible for intestinal and urinary tract infections, as well as sepsis and hemolytic uremic syndrome. They have in common the production of a serine protease called Pic. Several biological roles for Pic have been described, including protection of E. coli DH5α from complement-mediated killing. Hereby we showed that Pic significantly reduces complement activation by all 3 pathways. Pic cleaves purified C3/C3b and other proteins from the classic and lectin pathways, such as C4 and C2. Cleavage fragments of C3, C4, and C2 were also observed with HB101(pPic1) culture supernatants, and C3 cleavage sites were mapped by fluorescence resonance energy transfer peptides. Experiments using human serum as a source of complement proteins confirmed Pic proteolytic activity on these proteins. Furthermore, Pic works synergistically with the human complement regulators factor I and factor H, promoting inactivation of C3b. In the presence of both regulators, further degradation of C3 α' chain was observed. Therefore, Pic may contribute to immune evasion of E. coli and S. flexneri, favoring invasiveness and increasing the severity of the disorders caused by these pathogens.


Assuntos
Proteínas do Sistema Complemento/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/fisiologia , Evasão da Resposta Imune , Serina Endopeptidases/metabolismo , Fatores de Virulência/metabolismo , Humanos , Hidrólise
8.
Infect Immun ; 83(1): 379-88, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25385791

RESUMO

Enteropathogenic Escherichia coli (EPEC) is classified as typical (tEPEC) or atypical (aEPEC) based on the presence or absence of the E. coli adherence factor plasmid (pEAF), respectively. The hallmark of EPEC infection is the formation of the attaching and effacing (A/E) lesions on the gut mucosa. We compared the kinetics of A/E lesion formation induced by aEPEC and tEPEC. The examination of infected HEp-2 cells clearly demonstrated delayed A/E lesion formation by aEPEC in comparison to tEPEC. This delay was associated with the expression of locus of enterocyte effacement (LEE)-encoded virulence factors (i.e., intimin and EspD). Indeed, the insertion of a plasmid containing perABC, a transcriptional regulator of virulence factors involved in A/E formation, into aEPEC strains increased and accelerated the formation of A/E lesions. Interestingly, the enhanced expression and translocation of LEE-encoded proteins, such as those expressed in LEE5 (intimin) and LEE4 (EspD), in aEPEC (perABC) was independent of bacterial adhesion. The secretion kinetics of these two proteins representing LEE5 and LEE4 expression correlated with A/E lesion formation. We conclude that the lack of Per in the regulation network of virulence genes is one of the main factors that delay the establishment of A/E lesions induced by aEPEC strains.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Escherichia coli Enteropatogênica/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Adesinas Bacterianas/genética , Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/genética , Células Hep G2 , Hepatócitos/microbiologia , Humanos , Plasmídeos , Proteínas Repressoras/genética , Fatores de Transcrição/genética
9.
Infect Immun ; 82(4): 1719-24, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24516112

RESUMO

Fimbria-mediated adherence to the intestinal epithelia is a key step in enteroaggregative Escherichia coli (EAEC) pathogenesis. To date, four fimbriae have been described for EAEC; aggregative adherence fimbria II (AAF/II) is the most important adherence factor for EAEC prototype strain 042. Previously, we described results showing that extracellular matrix (ECM) components might be involved in the recognition of AAF/II fimbriae by intestinal cells. In this study, we sought to identify novel potential receptors on intestinal epithelial cells recognized by the AAF/II fimbriae. Purified AafA-dsc protein, the major subunit of AAF/II fimbriae, was incubated with a monolayer of T84 cells, cross-linked to the surface-exposed T84 cell proteins, and immunoprecipitated by using anti-AafA antibodies. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of cellular proteins bound to AafA-dsc protein identified laminin (previously recognized as a potential receptor for AAF/II) and cytokeratin 8 (CK8). Involvement of the major subunit of AAF/II fimbriae (AafA protein) in the binding to recombinant CK8 was confirmed by adherence assays with purified AAF/II fimbriae, AafA-dsc protein, and strain 042. Moreover, HEp-2 cells transfected with CK8 small interfering RNA (siRNA) showed reduced 042 adherence compared with cells transfected with scrambled siRNA as a control. Adherence of 042 to HEp-2 cells preincubated with antibodies against ECM proteins or CK8 was substantially reduced. Altogether, our results supported the idea of a role of CK8 as a potential receptor for EAEC.


Assuntos
Aderência Bacteriana/fisiologia , Células Epiteliais/microbiologia , Escherichia coli/fisiologia , Fímbrias Bacterianas/fisiologia , Queratina-8/fisiologia , Laminina/fisiologia , Adesinas de Escherichia coli , Linhagem Celular , Células Epiteliais/fisiologia , Fibronectinas/imunologia , Humanos , Mucosa Intestinal/citologia , Queratina-8/metabolismo , Laminina/imunologia , Proteínas de Membrana
10.
Infect Immun ; 82(6): 2255-65, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24643541

RESUMO

EspC is a non-locus of enterocyte effacement (LEE)-encoded autotransporter produced by enteropathogenic Escherichia coli (EPEC) that is secreted to the extracellular milieu by a type V secretion system and then translocated into epithelial cells by the type III secretion system. Here, we show that this efficient EspC delivery into the cell leads to a cytopathic effect characterized by cell rounding and cell detachment. Thus, EspC is the main protein involved in epithelial cell cytotoxicity detected during EPEC adhesion and pedestal formation assays. The cell detachment phenotype is triggered by cytoskeletal and focal adhesion disruption. EspC-producing EPEC is able to cleave fodrin, paxillin, and focal adhesion kinase (FAK), but these effects are not observed when cells are infected with an espC isogenic mutant. Recovery of these phenotypes by complementing the mutant with the espC gene but not with the espC gene mutated in the serine protease motif highlights the role of the protease activity of EspC in the cell detachment phenotype. In vitro assays using purified proteins showed that EspC, but not EspC with an S256I substitution [EspCS256I], directly cleaves these cytoskeletal and focal adhesion proteins. Kinetics of protein degradation indicated that EspC-producing EPEC first cleaves fodrin (within the 11th and 9th repetitive units at the Q1219 and D938 residues, respectively), and this event sequentially triggers paxillin degradation, FAK dephosphorylation, and FAK degradation. Thus, cytoskeletal and focal adhesion protein cleavage leads to the cell rounding and cell detachment promoted by EspC-producing EPEC.


Assuntos
Aderência Bacteriana/fisiologia , Proteínas de Transporte/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Células Epiteliais/metabolismo , Proteínas de Escherichia coli/fisiologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas dos Microfilamentos/metabolismo , Paxilina/metabolismo , Adesão Celular , Linhagem Celular , Células Epiteliais/patologia , Infecções por Escherichia coli/microbiologia , Humanos
11.
Front Cell Infect Microbiol ; 14: 1327241, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371299

RESUMO

Plasmid-encoded toxin (Pet) is an autotransporter protein of the serine protease autotransporters of Enterobacteriaceae (SPATE) family, important in the pathogenicity of Escherichia coli. The pet gene was initially found in the enteroaggregative E. coli (EAEC) virulence plasmid, pAA2. Although this virulence factor was initially described in EAEC, an intestinal E. coli pathotype, pet may also be present in other pathotypes, including extraintestinal pathogenic strains (ExPEC). The complement system is an important defense mechanism of the immune system that can be activated by invading pathogens. Proteases produced by pathogenic bacteria, such as SPATEs, have proteolytic activity and can cleave components of the complement system, promoting bacterial resistance to human serum. Considering these factors, the proteolytic activity of Pet and its role in evading the complement system were investigated. Proteolytic assays were performed by incubating purified components of the complement system with Pet and Pet S260I (a catalytic site mutant) proteins. Pet, but not Pet S260I, could cleave C3, C5 and C9 components, and also inhibited the natural formation of C9 polymers. Furthermore, a dose-dependent inhibition of ZnCl2-induced C9 polymerization in vitro was observed. E. coli DH5α survived incubation with human serum pre-treated with Pet. Therefore, Pet can potentially interfere with the alternative and the terminal pathways of the complement system. In addition, by cleaving C9, Pet may inhibit membrane attack complex (MAC) formation on the bacterial outer membrane. Thus, our data are suggestive of a role of Pet in resistance of E. coli to human serum.


Assuntos
Toxinas Bacterianas , Infecções por Escherichia coli , Proteínas de Escherichia coli , Humanos , Escherichia coli/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas do Sistema Complemento/metabolismo , Serina Proteases/metabolismo , Infecções por Escherichia coli/microbiologia , Plasmídeos/genética
12.
Microbiology (Reading) ; 159(Pt 2): 392-401, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23258265

RESUMO

Naegleria fowleri is the aetiological agent of primary amoebic meningoencephalitis. This parasite invades its host by penetrating the olfactory mucosa. However, the mechanism of epithelium penetration is not well understood. In the present study, we evaluated the effect of N. fowleri trophozoites and the non-pathogenic Naegleria gruberi on Madin-Darby canine kidney (MDCK) tight junction proteins, including claudin-1, occludin and ZO-1, as well as on the actin cytoskeleton. Trophozoites from each of the free-living amoeba species were co-cultured with MDCK cells in a 1 : 1 ratio for 1, 3, 6 or 10 h. Light microscopy revealed that N. fowleri caused morphological changes as early as 3 h post-infection in an epithelial MDCK monolayer. Confocal microscopy analysis revealed that after 10 h of co-culture, N. fowleri trophozoites induced epithelial cell damage, which was characterized by changes in the actin apical ring and disruption of the ZO-1 and claudin-1 proteins but not occludin. Western blot assays revealed gradual degradation of ZO-1 and claudin-1 as early as 3 h post-infection. Likewise, there was a drop in transepithelial electrical resistance that resulted in increased epithelial permeability and facilitated the invasion of N. fowleri trophozoites by a paracellular route. In contrast, N. gruberi did not induce alterations in MDCK cells even at 10 h post-infection. Based on these results, we suggest that N. fowleri trophozoites disrupt epithelial monolayers, which could enable their penetration of the olfactory epithelium and subsequent invasion of the central nervous system.


Assuntos
Naegleria fowleri/patogenicidade , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/microbiologia , Actinas/metabolismo , Animais , Western Blotting , Técnicas de Cocultura , Cães , Células Madin Darby de Rim Canino , Microscopia
13.
Appl Environ Microbiol ; 79(1): 411-4, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23104414

RESUMO

Autotransporter (AT) protein-encoding genes of diarrheagenic Escherichia coli (DEC) pathotypes (cah, eatA, ehaABCDJ, espC, espI, espP, pet, pic, sat, and tibA) were detected in typical and atypical enteropathogenic E. coli (EPEC) in frequencies between 0.8% and 39.3%. Although these ATs have been described in particular DEC pathotypes, their presence in EPEC indicates that they should not be considered specific virulence markers.


Assuntos
Escherichia coli Enteropatogênica/genética , Proteínas de Membrana Transportadoras/genética , Fatores de Virulência/genética , Escherichia coli Enteropatogênica/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Epidemiologia Molecular
14.
Cells ; 12(2)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36672210

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder caused by the expression of progerin, a mutant variant of Lamin A. Recently, HGPS studies have gained relevance because unraveling its underlying mechanism would help to understand physiological aging. We previously reported that the CRM1-mediated nuclear protein export pathway is exacerbated in HGPS cells, provoking the mislocalization of numerous protein targets of CRM1. We showed that normalization of this mechanism by pharmacologically inhibiting CRM1 with LMB (specific CRM1 inhibitor), mitigates the senescent phenotype of HGPS cells. Since mitochondrial dysfunction is a hallmark of HGPS, in this study we analyze the effect of LMB on mitochondrial function. Remarkably, LMB treatment induced the recovery of mitochondrial function in HGPS cells, as shown by the improvement in mitochondrial morphology, mitochondrial membrane potential, and ATP levels, which consequently impeded the accumulation of ROS but not mitochondrial superoxide. We provide evidence that the beneficial effect of LMB is mechanistically based on a combinatory effect on mitochondrial biogenesis via upregulation of PGC-1α expression (master transcription cofactor of mitochondrial genes), and mitophagy through the recovery of lysosomal content. The use of exportin CRM1 inhibitors constitutes a promising strategy to treat HGPS and other diseases characterized by mitochondrial impairment.


Assuntos
Senilidade Prematura , Progéria , Humanos , Progéria/tratamento farmacológico , Progéria/genética , Progéria/metabolismo , Carioferinas/metabolismo , Senilidade Prematura/genética , Núcleo Celular/metabolismo , Mitocôndrias/metabolismo
15.
Infect Immun ; 80(7): 2276-85, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22547550

RESUMO

Despite the autotransporter (AT) moniker, AT secretion appears to involve the function of periplasmic chaperones. We identified four periplasmic proteins that specifically bound to plasmid-encoded toxin (Pet), an AT produced by enteroaggregative Escherichia coli (EAEC). These proteins include the 17-kDa Skp chaperone and the 37-kDa VirK protein. We found that the virK gene is present in different Enterobacteriaceae. VirK bound to misfolded conformations of the Pet passenger domain, but it did not bind to the folded passenger domain or to the ß domain of Pet. Assays with an EAECΔvirK mutant and its complemented version showed that, in the absence of VirK, Pet was not secreted but was instead retained in the periplasm as proteolytic fragments. In contrast, Pet was secreted from a Δskp mutant. VirK was not required for the insertion of porin proteins into the outer membrane but assisted with insertion of the Pet ß domain into the outer membrane. Loss of VirK function blocked the EAEC-mediated cytotoxic effect against HEp-2 cells. Thus, VirK facilitates the secretion of the AT Pet by maintaining the passenger domain in a conformation that both avoids periplasmic proteolysis and facilitates ß-domain insertion into the outer membrane.


Assuntos
Enterotoxinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Periplásmicas/metabolismo , Serina Endopeptidases/metabolismo , Toxinas Bacterianas , Linhagem Celular , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Deleção de Genes , Teste de Complementação Genética , Hepatócitos/efeitos dos fármacos , Humanos , Peso Molecular , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Dobramento de Proteína
16.
Ann Hepatol ; 11(1): 107-17, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22166569

RESUMO

Although Entamoeba dispar displays a similar morphology to Entamoeba histolytica, cellular and molecular studies have revealed significant differences between these two amoebae, including the former being characterized as non-pathogenic and the later as pathogenic. However, recent in vivo and in vitro experiments have shown that E. dispar strains of different origin are capable of causing liver damage and destroying cell culture lines in the presence of common intestinal bacteria. These results suggested that E. dispar may present pathogenic behavior according to the specific E. dispar strain, culture and environmental conditions. To investigate this possibility, we carried out in vivo and in vitro studies using a xenic strain E. dispar (ICB-ADO) isolated from a symptomatic non-dysenteric Brazilian patient. This strain was able to induce liver necrosis in a hamster model that was more severe than that produced by E. histolytica. The ICB-ADO isolate also caused significantly more destruction of cultured MDCK cells and increased loss of transepithelial resistance than did the E. histolytica. Xenic E. dispar exhibited high proteolytic activity, which was partially inhibited by the addition of cysteine-protease inhibitors. Based on our biochemical and molecular characterization of E. dispar (ICB-ADO) xenic culture and its ability to produce liver abscesses, we conclude that this specific strain can indeed produce tissue damage, distinct from the frequently used non- pathogenic E. dispar SAW 760 strain.


Assuntos
Entamoeba/classificação , Entamoeba/patogenicidade , Abscesso Hepático Amebiano/parasitologia , Fígado/parasitologia , Animais , Brasil , Células Cultivadas , Cricetinae , Modelos Animais de Doenças , Cães , Humanos , Técnicas In Vitro , Incidência , Rim/parasitologia , Rim/patologia , Fígado/patologia , Abscesso Hepático Amebiano/epidemiologia , Abscesso Hepático Amebiano/patologia , Masculino , Mesocricetus , Proteólise
17.
J Biol Chem ; 285(41): 31261-7, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20667832

RESUMO

Cholera toxin (CT) is an AB(5) toxin that moves from the cell surface to the endoplasmic reticulum (ER) by retrograde vesicular transport. In the ER, the catalytic A1 subunit dissociates from the rest of the toxin and enters the cytosol by exploiting the quality control system of ER-associated degradation (ERAD). The driving force for CTA1 dislocation into the cytosol is unknown. Here, we demonstrate that the cytosolic chaperone Hsp90 is required for CTA1 passage into the cytosol. Hsp90 bound to CTA1 in an ATP-dependent manner that was blocked by geldanamycin (GA), an established Hsp90 inhibitor. CT activity against cultured cells and ileal loops was also blocked by GA, as was the ER-to-cytosol export of CTA1. Experiments using RNA interference or N-ethylcarboxamidoadenosine, a drug that inhibits ER-localized GRP94 but not cytosolic Hsp90, confirmed that the inhibitory effects of GA resulted specifically from the loss of Hsp90 activity. This work establishes a functional role for Hsp90 in the ERAD-mediated dislocation of CTA1.


Assuntos
Toxina da Cólera/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Benzoquinonas/farmacologia , Células CHO , Toxina da Cólera/genética , Cricetinae , Cricetulus , Retículo Endoplasmático/genética , Inibidores Enzimáticos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/genética , Células HeLa , Humanos , Lactamas Macrocíclicas/farmacologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ligação Proteica , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
18.
Infect Immun ; 78(10): 4101-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20696826

RESUMO

A hallmark of enteroaggregative Escherichia coli (EAEC) infection is a formation of biofilm, which comprises a mucus layer with immersed bacteria in the intestines of patients. While studying the mucinolytic activity of Pic in an in vivo system, rat ileal loops, we surprisingly found that EAEC induced hypersecretion of mucus, which was accompanied by an increase in the number of mucus-containing goblet cells. Interestingly, an isogenic pic mutant (EAEC Δpic) was unable to cause this mucus hypersecretion. Furthermore, purified Pic was also able to induce intestinal mucus hypersecretion, and this effect was abolished when Pic was heat denatured. Site-directed mutagenesis of the serine protease catalytic residue of Pic showed that, unlike the mucinolytic activity, secretagogue activity did not depend on this catalytic serine protease motif. Other pathogens harboring the pic gene, such as Shigella flexneri and uropathogenic E. coli (UPEC), also showed results similar to those for EAEC, and construction of isogenic pic mutants of S. flexneri and UPEC confirmed this secretagogue activity. Thus, Pic mucinase is responsible for one of the pathophysiologic features of the diarrhea mediated by EAEC and the mucoid diarrhea induced by S. flexneri.


Assuntos
Proteínas de Escherichia coli/fisiologia , Escherichia coli/metabolismo , Íleo/metabolismo , Muco/metabolismo , Serina Endopeptidases/fisiologia , Shigella flexneri/metabolismo , Animais , Escherichia coli/classificação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica/fisiologia , Células Caliciformes/citologia , Células Caliciformes/efeitos dos fármacos , Íleo/microbiologia , Masculino , Mutagênese Sítio-Dirigida , Ratos , Ratos Sprague-Dawley , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-32432054

RESUMO

Shiga-toxin-producing Escherichia coli (STEC) has become an important pathogen that can cause diarrhea, hemorrhagic colitis and hemolytic uremic syndrome (HUS) in humans. Recent reports show that the type VI secretion system (T6SS) from EHEC is required to produce infection in a murine model and its expression has been related to a higher prevalence of HUS. In this work, we use bioinformatics analyses to identify the core genes of the T6SS and compared the differences between these components among the two published genomes for EHEC O157:H7 strain EDL933. Prototype strain EDL933 was further compared with other O157:H7 genomes. Unlike other typical T6SS effectors found in E. coli, we identified that there are several rhs family genes in EHEC, which could serve as T6SS effectors. In-silico and PCR analyses of the differences between rhs genes in the two existing genomes, allowed us to determine that the most recently published genome is more reliable to study the rhs genes. Analyzing the putative tridimensional structure of Rhs proteins, as well as the motifs found in their C-terminal end, allowed us to predict their possible functions. A phylogenetic analysis showed that the orphan rhs genes are more closely related between them than the rhs genes belonging to vgrG islands and that they are divided into three clades. Analyses of the downstream region of the rhs genes for identifying hypothetical immunity proteins showed that every gene has an associated small ORF (129-609 nucleotides). These genes could serve as immunity proteins as they had several interaction motifs as well as structural homology with other known immunity proteins. Our findings highlight the relevance of the T6SS in EHEC as well as the possible function of the Rhs effectors of EHEC O157:H7 during pathogenesis and bacterial competition, and the identification of novel effectors for the T6SS using a structural approach.


Assuntos
Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Síndrome Hemolítico-Urêmica , Animais , Simulação por Computador , Escherichia coli Êntero-Hemorrágica/genética , Proteínas de Escherichia coli/genética , Humanos , Camundongos , Filogenia
20.
Front Immunol ; 11: 564953, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281812

RESUMO

A hallmark of enteroaggregative Escherichia coli (EAEC) infection is the formation of an intestinal biofilm, which comprises a mucus layer with immersed bacteria. Pic is an autotransporter secreted by EAEC, and other E. coli pathotypes, and has been involved in two apparently contradictory phenotypes, as a mucus secretagogue and as a mucinase. Here, we investigated this Pic dual activity, mucus secretagogue capability and mucinolytic activity, in human goblet cells that secrete MUC2 and MUC5AC. Pic induced mucus hypersecretion directly in the goblet cells, without other intestinal cell types involved. At the same time, Pic exhibited strong proteolytic activity on the secreted mucins. These activities were independent since a mutation in the serine protease motif (PicS258I) abolished mucin degradation while maintaining the mucus secretagogue activity intact. Furthermore, deoxycholic acid (DCA)-induced mucins were proteolytically degraded when goblet cells were co-incubated with DCA/Pic, while co-incubation with DCA/PicS258I induced a synergistic effect on mucus hypersecretion. Pic was more efficient degrading MUC5AC than MUC2, but no degradation was detected with Pic inactivated at the active site by mutation or pharmacological inhibition. Remarkably, Pic cleaved MUC2 and MUC5AC in the C-terminal domain, leaving N-terminal subproducts, impacting the feature of gel-forming mucins and allowing mucus layer penetration by EAEC. Astonishingly, Pic stimulated rapid mucin secretion in goblet-like cells by activating the intracellular calcium pathway resulting from the PLC signal transduction pathway, leading to the production of DAG and releasing IP3, a second messenger of calcium signaling. Therefore, the dual activity of Pic, as a mucus secretagogue and a mucinase, is relevant in the context of carbon source generation and mucus layer penetration, allowing EAEC to live within the layer of mucus but also access epithelial cells.


Assuntos
Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Muco/metabolismo , Polissacarídeo-Liases/metabolismo , Secretagogos/metabolismo , Serina Endopeptidases/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Domínio Catalítico , Linhagem Celular , Infecções por Escherichia coli/microbiologia , Células Caliciformes/metabolismo , Células Caliciformes/microbiologia , Humanos , Mucina-5AC/metabolismo , Mucina-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA