Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Malar J ; 20(1): 38, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33436004

RESUMO

BACKGROUND: Characterizing the genetic diversity of malaria parasite populations in different endemic settings (from low to high) could be helpful in determining the effectiveness of malaria interventions. This study compared Plasmodium falciparum parasite population diversity from two sites with low (pre-elimination) and high transmission in Senegal and Nigeria, respectively. METHODS: Parasite genomic DNA was extracted from 187 dried blood spot collected from confirmed uncomplicated P. falciparum malaria infected patients in Senegal (94) and Nigeria (93). Allelic polymorphism at merozoite surface protein 1 (msp1) and merozoite surface protein- 2 (msp2) genes were assessed by nested PCR. RESULTS: The most frequent msp1 and msp2 allelic families are the K1 and IC3D7 allelotypes in both Senegal and Nigeria. Multiplicity of infection (MOI) of greater that 1 and thus complex infections was common in both study sites in Senegal (Thies:1.51/2.53; Kedougou:2.2/2.0 for msp1/2) than in Nigeria (Gbagada: 1.39/1.96; Oredo: 1.35/1.75]). The heterozygosity of msp1 gene was higher in P. falciparum isolates from Senegal (Thies: 0.62; Kedougou: 0.53) than isolates from Nigeria (Gbagada: 0.55; Oredo: 0.50). In Senegal, K1 alleles was associated with heavy than with moderate parasite density. Meanwhile, equal proportions of K1 were observed in both heavy and moderate infection types in Nigeria. The IC3D7 subtype allele of the msp2 family was the most frequent in heavily parasitaemic individuals from both countries than in the moderately infected participants. CONCLUSION: The unexpectedly low genetic diversity of infections high endemic Nigerian setting compared to the low endemic settings in Senegal is suggestive of possible epidemic outbreak in Nigeria.


Assuntos
Antígenos de Protozoários/genética , Variação Genética , Malária Falciparum/parasitologia , Proteína 1 de Superfície de Merozoito/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Malária Falciparum/epidemiologia , Masculino , Pessoa de Meia-Idade , Nigéria/epidemiologia , Senegal/epidemiologia , Adulto Jovem
2.
Artigo em Inglês | MEDLINE | ID: mdl-28069653

RESUMO

The emergence of Plasmodium falciparum resistance to artemisinin in Southeast Asia threatens malaria control and elimination activities worldwide. Multiple polymorphisms in the P. falciparum kelch gene found in chromosome 13 (Pfk13) have been associated with artemisinin resistance. Surveillance of potential drug resistance loci within a population that may emerge under increasing drug pressure is an important public health activity. In this context, P. falciparum infections from an observational surveillance study in Senegal were genotyped using targeted amplicon deep sequencing (TADS) for Pfk13 polymorphisms. The results were compared to previously reported Pfk13 polymorphisms from around the world. A total of 22 Pfk13 propeller domain polymorphisms were identified in this study, of which 12 have previously not been reported. Interestingly, of the 10 polymorphisms identified in the present study that were also previously reported, all had a different amino acid substitution at these codon positions. Most of the polymorphisms were present at low frequencies and were confined to single isolates, suggesting they are likely transient polymorphisms that are part of naturally evolving parasite populations. The results of this study underscore the need to identify potential drug resistance loci existing within a population, which may emerge under increasing drug pressure.


Assuntos
Proteínas de Ligação a DNA/genética , Resistência a Medicamentos/genética , Proteínas Nucleares/genética , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Antimaláricos/farmacologia , Artemisininas/farmacologia , Monitoramento Epidemiológico , Expressão Gênica , Genótipo , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Epidemiologia Molecular , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Senegal , Alinhamento de Sequência , Análise de Sequência de DNA
3.
Malar J ; 16(1): 250, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615016

RESUMO

BACKGROUND: The monitoring of Plasmodium falciparum sensitivity to anti-malarial drugs is a necessity for effective case management of malaria. This species is characterized by a strong resistance to anti-malarial drugs. In Senegal, the first cases of chloroquine resistance were reported in the Dakar region in 1988 with nearly 7% population prevalence, reaching 47% by 1990. It is in this context that sulfadoxine-pyrimethamine temporarily replaced chloroquine as first line treatment in 2003, pending the introduction of artemisinin-based combination therapy in 2006. The purpose of this study is to assess the ex vivo sensitivity to different anti-malarial drugs of the P. falciparum population from Pikine. METHODS: Fifty-four samples were collected from patients with non-complicated malaria and aged between 2 and 20 years in the Deggo health centre in Pikine in 2014. An assay in which parasites are stained with 4', 6-di-amidino-2-phenylindole (DAPI), was used to study the ex vivo sensitivity of isolates to chloroquine, amodiaquine, piperaquine, pyrimethamine, and dihydroartemisinin. High resolution melting was used for genotyping of pfdhps, pfdhfr, pfmdr1, and pfcrt genes. RESULTS: The mean IC50s of chloroquine, amodiaquine, piperaquine, dihydroartemisinin, and pyrimethamine were, respectively, 39.44, 54.02, 15.28, 2.23, and 64.70 nM. Resistance mutations in pfdhfr gene, in codon 437 of pfdhps gene, and an absence of mutation at position 540 of pfdhps were observed. Mutations in codons K76T of pfcrt and N86Y of pfmdr1 were observed at 51 and 11% population prevalence, respectively. A relationship was found between the K76T and N86Y mutations and ex vivo resistance to chloroquine. CONCLUSION: An increase in sensitivity of isolates to chloroquine was observed. A high sensitivity to dihydroartemisinin was observed; whereas, a decrease in sensitivity to pyrimethamine was observed in the parasite population from Pikine.


Assuntos
Antimaláricos/farmacologia , Malária/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Adolescente , Amodiaquina/farmacologia , Artemisininas/farmacologia , Criança , Pré-Escolar , Cloroquina/farmacologia , DNA de Protozoário/química , DNA de Protozoário/isolamento & purificação , Resistência a Medicamentos/genética , Corantes Fluorescentes , Genótipo , Técnicas de Genotipagem , Humanos , Indóis , Concentração Inibidora 50 , Mutação , Testes de Sensibilidade Parasitária , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Pirimetamina/farmacologia , Quinolinas/farmacologia , Senegal , Adulto Jovem
4.
Malar J ; 15(1): 429, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27557982

RESUMO

BACKGROUND: Plasmodium ovale is rarely described in Senegal. A case of clinical malaria due to P. ovale wallikeri in West Central of Senegal is reported. CASE: A 34-year-old male baker in Dakar, with no significant previous medical history, was admitted to a health clinic with fever and vomiting. Fever had been lasting for 4 days with peaks every 48 h. As monospecific Plasmodium falciparum HRP-2 RDT was negative, he was treated with antibiotics. However, owing to persisting symptoms, he was referred to the emergency unit of the Youssou Mbargane Diop Hospital, Dakar, Senegal. Clinical examination found impaired general condition. All other physical examinations were normal. Laboratory tests showed anaemia (haemoglobin 11.4 g/dl), severe thrombocytopaenia (platelets 30 × 10(9)/mm(3)), leukopenia (3650/mm(3)), lymphocytopenia (650/mm(3)). Renal function was normal as indicated by creatininaemia and uraemia (11 mg/l and 0.25 g/l, respectively) and liver enzymes were slightly elevated (aspartate aminotransferase 77 UI/l and alanine aminotransferase 82 UI/l). Blood smear evaluations in Parasitology Laboratory of Aristide Le Dantec Hospital showed malaria parasites of the species P. ovale with a 0.08 % parasitaemia. Molecular confirmation was done by real time PCR targeting the 18S rRNA gene. The P. ovale infection was further analysed to species level targeting the potra gene and was identified as P. ovale wallikeri. According to the hospital's malaria treatment guidelines for severe malaria, treatment consisted of intravenous quinine at hour 0 (start of treatment) and 24 h after initial treatment, followed by artemether-lumefantrine 24 h later. A negative microscopy was noted on day 3 post-treatment and the patient reported no further symptoms. CONCLUSION: Malaria due to non-falciparum species is probably underestimated in Senegal. RDTs specific to non-falciparum species and/or pan specific RDTs should be included as tools of diagnosis to fight against malaria in Senegal. In addition, a field-deployable molecular tool such as the loop-mediated isothermal amplification can be considered as an additional useful tool to detect low malaria parasite infections and for speciation. In addition, national malaria control policies should consider other non-falciparum species in treatment guidelines, including the provision of primaquine for the treatment of relapsing parasites.


Assuntos
Malária/diagnóstico , Malária/parasitologia , Plasmodium ovale/classificação , Plasmodium ovale/isolamento & purificação , Adulto , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina , Artemisininas/uso terapêutico , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Combinação de Medicamentos , Etanolaminas/uso terapêutico , Fluorenos/uso terapêutico , Humanos , Malária/tratamento farmacológico , Malária/patologia , Masculino , Microscopia , Plasmodium ovale/genética , Quinina/uso terapêutico , RNA Ribossômico 18S/genética , Senegal , Análise de Sequência de DNA
5.
Malar J ; 15(1): 433, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27562216

RESUMO

BACKGROUND: The use of artemisinin as a monotherapy resulted in the emergence of artemisinin resistance in 2005 in Southeast Asia. Monitoring of artemisinin combination therapy (ACT) is critical in order to detect and prevent the spread of resistance in endemic areas. Ex vivo studies and genotyping of molecular markers of resistance can be used as part of this routine monitoring strategy. One gene that has been associated in some ACT partner drug resistance is the Plasmodium falciparum multidrug resistance protein 1 (pfmdr1) gene. The purpose of this study was to assess the drug susceptibility of P. falciparum populations from Thiès, Senegal by ex vivo assay and typing molecular markers of resistance to drug components of ACT currently used for treatment. METHODS: The ex vivo susceptibility of 170 P. falciparum isolates to chloroquine, amodiaquine, lumefantrine, artesunate, and artemether was determined using the DAPI ex vivo assay. The high resolution melting technique was used to genotype the pfmdr1 gene at codons 86, 184 and 1246. RESULTS: A significant decrease in IC50 values was observed between 2012 and 2013: from 13.84 to 6.484 for amodiaquine, 173.4 to 113.2 for lumefantrine, and 39.72 to 18.29 for chloroquine, respectively. Increase of the wild haplotype NYD and the decrease of the mutant haplotype NFD (79 and 62.26 %) was also observed. A correlation was observed between the wild type allele Y184 in pfmdr1 and higher IC50 for all drugs, except amodiaquine. CONCLUSION: This study has shown an increase in sensitivity over the span of two transmission seasons, marked by an increase in the WT alleles at pfmdr1. Continuous the monitoring of the ACT used for treatment of uncomplicated malaria will be helpful.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Etanolaminas/farmacologia , Fluorenos/farmacologia , Frequência do Gene , Haplótipos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Seleção Genética , Adolescente , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina , Artemisininas/uso terapêutico , Criança , Pré-Escolar , Combinação de Medicamentos , Etanolaminas/uso terapêutico , Feminino , Fluorenos/uso terapêutico , Genética Populacional , Técnicas de Genotipagem , Humanos , Malária Falciparum/parasitologia , Masculino , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , Senegal , Adulto Jovem
6.
BMC Res Notes ; 17(1): 68, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461329

RESUMO

BACKGROUND: Following WHO guidelines, microscopy is the gold standard for malaria diagnosis in endemic countries. The Parasitology-Mycology laboratory (LPM) is the National Reference Laboratory and is currently undergoing ISO 15189 accreditation. In this context, we assessed the performance of the laboratory by confirming the reliability and the accuracy of results obtained in accordance with the requirements of the ISO 15189 standards. This study aimed to verify the method of microscopic diagnosis of malaria at the LPM, in the Aristide Le Dantec hospital (HALD) in Dakar, Senegal. METHODS: This is a validation/verification study conducted from June to August 2020. Twenty (20) microscopic slides of thick/thin blood smear with known parasite densities (PD) selected from the Cheick Anta Diop University malaria slide bank in Dakar were used for this assessment. Six (6) were used to assess microscopists' ability to determine PD and fourteen (14) slides were used for detection (positive vs negative) and identification of parasites. Four (4) LPM-HALD microscopists read and recorded their results on prepared sheets. Data analysis was done with Microsoft Excel 2010 software. RESULTS: A minimum threshold of 50% concordance was used for comparison. Of the twenty (20) slides read, 100% concordance was obtained on eight (8) detection (positive vs negative) slides. Four (4) out of the six (6) parasite density evaluation slides obtained a concordance of less than 50%. Thirteen (13) out of the fourteen (14) identification slides obtained a concordance greater than 50%. Only one (1) identification slide obtained zero agreement from the microscopists. For species identification a concordance greater than 80% was noted and the microscopists obtained scores between 0.20 and 0.4 on a scale of 0 to 1 for parasite density reading. The microscopists obtained 100% precision, sensitivity, specificity and both negative and positive predictive values. CONCLUSION: This work demonstrated that the microscopic method of malaria diagnosis used in the LPM/HALD is in accordance with the requirements of WHO and ISO 15189. Further training of microscopists may be needed to maintain competency.


Assuntos
Malária , Humanos , Senegal , Reprodutibilidade dos Testes , Malária/diagnóstico , Malária/parasitologia , Laboratórios , Hospitais Universitários
7.
Am J Trop Med Hyg ; 105(3): 670-676, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34255739

RESUMO

In 2005, artemether-lumefantrine (AL), an artemisinin-based combination therapy, was introduced as the first-line treatment of uncomplicated Plasmodium falciparum malaria in Benin. Per World Health Organization recommendations to monitor the efficacy of antimalarial treatment, we conducted a therapeutic efficacy study with AL for uncomplicated P. falciparum malaria in Bohicon and Kandi, Benin, from 2018 to 2019. Febrile patients aged 6 to 59 months with confirmed P. falciparum monoinfection received supervised doses of AL for 3 days. We monitored patients clinically and parasitologically on days 1, 2, 3, 7, 14, 21, and 28. A molecular analysis to detect mutations in the P. falciparum Kelch propeller gene (Pfk13) gene was carried out on day 0 samples. A total of 205 patients were included in the study. In Bohicon, the uncorrected adequate clinical and parasitological response (ACPR) proportion was 91.3% (95% confidence interval [CI]: 84.6-95.8%), whereas in Kandi this proportion was 96.7% (95% CI: 90.6-99.3%). Genotype-corrected ACPR proportions were 96.3% (95% CI: 90.9-99.0%) and 96.7% (95% CI: 90.6-99.3%) in Bohicon and Kandi, respectively. On day 3, 100% of patients in Bohicon and 98.9% of patients in Kandi had undetectable parasitemia. The C580Y mutation in the Pfk13 gene was not observed. AL remains effective for P. falciparum malaria in these two sites in Benin. Monitoring antimalarial efficacy and prevalence of molecular-resistance markers in Benin should be continued to allow for early detection of antimalarial resistance and to guide treatment policies.


Assuntos
Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/tratamento farmacológico , Benin , Pré-Escolar , DNA de Protozoário/genética , Resistência Microbiana a Medicamentos/genética , Feminino , Humanos , Lactente , Masculino , Plasmodium falciparum/genética , Resultado do Tratamento
8.
Am J Trop Med Hyg ; 95(5): 1054-1060, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27549635

RESUMO

In 2006, artemether-lumefantrine (AL) became the first-line treatment of uncomplicated malaria in Senegal, Mali, and the Gambia. To monitor its efficacy, between August 2011 and November 2014, children with uncomplicated Plasmodium falciparum malaria were treated with AL and followed up for 42 days. A total of 463 subjects were enrolled in three sites (246 in Senegal, 97 in Mali, and 120 in Gambia). No early treatment failure was observed and malaria infection cleared in all patients by day 3. Polymerase chain reaction (PCR)-adjusted adequate clinical and parasitological response (ACPR) was 100% in Mali, and the Gambia, and 98.8% in Senegal. However, without PCR adjustment, ACPR was 89.4% overall; 91.5% in Mali, 98.8% in Senegal, and 64.3% in the Gambia (the lower value in the Gambia attributed to poor compliance of the full antimalarial course). However, pfmdr1 mutations were prevalent in Senegal and a decrease in parasite sensitivity to artesunate and lumefantrine (as measured by ex vivo drug assay) was observed at all sites. Recrudescent parasites did not show Kelch 13 (K13) mutations and AL remains highly efficacious in these west African sites.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Resistência a Medicamentos/genética , Etanolaminas/uso terapêutico , Fluorenos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Adolescente , Sequência de Aminoácidos , Artemeter , Criança , Pré-Escolar , Seguimentos , Gâmbia , Loci Gênicos , Humanos , Lumefantrina , Mali , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Senegal , Adulto Jovem
9.
Artigo em Inglês | MEDLINE | ID: mdl-24533303

RESUMO

Resistance to sulfadoxine-pyrimethamine (SP) in Plasmodium falciparum malaria parasites is associated with mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes, and these mutations have spread resistance worldwide. SP, used for several years in Senegal, has been recommended for intermittent preventive treatment for malaria in pregnancy (IPTp) and has been widely implemented since 2003 in this country. There is currently limited data on SP resistance from molecular marker genotyping, and no data on pyrimethamine ex vivo sensitivity in Senegal. Molecular markers of SP resistance and pyrimethamine ex vivo sensitivity were investigated in 416 parasite samples collected from the general population, from the Thies region between 2003 and 2011. The prevalence of the N51I/C59R/S108N triple mutation in dhfr increased from 40% in 2003 to 93% in 2011. Furthermore, the prevalence of the dhfr N51I/C59R/S108N and dhps A437G quadruple mutation increased, from 20% to 66% over the same time frame, then down to 44% by 2011. There was a significant increase in the prevalence of the dhfr triple mutation, as well as an association between dhfr genotypes and pyrimethamine response. Conversely, dhps mutations in codons 436 and 437 did not show consistent variation between 2003 and 2011. These findings suggest that regular screening for molecular markers of antifolate resistance and ex vivo drug response monitoring should be incorporated with ongoing in vivo efficacy monitoring in areas where IPTp-SP is implemented and where pyrimethamine and sulfa drugs are still widely administered in the general population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA