Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 222(3): 1584-1598, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30636349

RESUMO

Glomeromycotina is a lineage of early diverging fungi that establish arbuscular mycorrhizal (AM) symbiosis with land plants. Despite their major ecological role, the genetic basis of their obligate mutualism remains largely unknown, hindering our understanding of their evolution and biology. We compared the genomes of Glomerales (Rhizophagus irregularis, Rhizophagus diaphanus, Rhizophagus cerebriforme) and Diversisporales (Gigaspora rosea) species, together with those of saprotrophic Mucoromycota, to identify gene families and processes associated with these lineages and to understand the molecular underpinning of their symbiotic lifestyle. Genomic features in Glomeromycotina appear to be very similar with a very high content in transposons and protein-coding genes, extensive duplications of protein kinase genes, and loss of genes coding for lignocellulose degradation, thiamin biosynthesis and cytosolic fatty acid synthase. Most symbiosis-related genes in R. irregularis and G. rosea are specific to Glomeromycotina. We also confirmed that the present species have a homokaryotic genome organisation. The high interspecific diversity of Glomeromycotina gene repertoires, affecting all known protein domains, as well as symbiosis-related orphan genes, may explain the known adaptation of Glomeromycotina to a wide range of environmental settings. Our findings contribute to an increasingly detailed portrait of genomic features defining the biology of AM fungi.


Assuntos
Genoma Fúngico , Genômica , Glomeromycota/genética , Sequência Conservada , Elementos de DNA Transponíveis/genética , Genes Fúngicos , Lignina/metabolismo , Família Multigênica , Filogenia , Polissacarídeos/metabolismo , Reprodução , Simbiose/genética , Transcrição Gênica , Regulação para Cima/genética
2.
New Phytol ; 220(4): 1161-1171, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29355972

RESUMO

Arbuscular mycorrhizal fungi (AMF) are known to improve plant fitness through the establishment of mycorrhizal symbioses. Genetic and phenotypic variations among closely related AMF isolates can significantly affect plant growth, but the genomic changes underlying this variability are unclear. To address this issue, we improved the genome assembly and gene annotation of the model strain Rhizophagus irregularis DAOM197198, and compared its gene content with five isolates of R. irregularis sampled in the same field. All isolates harbor striking genome variations, with large numbers of isolate-specific genes, gene family expansions, and evidence of interisolate genetic exchange. The observed variability affects all gene ontology terms and PFAM protein domains, as well as putative mycorrhiza-induced small secreted effector-like proteins and other symbiosis differentially expressed genes. High variability is also found in active transposable elements. Overall, these findings indicate a substantial divergence in the functioning capacity of isolates harvested from the same field, and thus their genetic potential for adaptation to biotic and abiotic changes. Our data also provide a first glimpse into the genome diversity that resides within natural populations of these symbionts, and open avenues for future analyses of plant-AMF interactions that link AMF genome variation with plant phenotype and fitness.


Assuntos
Variação Genética , Genoma Fúngico , Glomeromycota/genética , Modelos Biológicos , Micorrizas/genética , Simbiose/genética , Adaptação Fisiológica/genética , Elementos de DNA Transponíveis/genética , Proteínas Fúngicas/química , Genes Fúngicos , Glomeromycota/isolamento & purificação , Anotação de Sequência Molecular , Filogenia , Domínios Proteicos , Especificidade da Espécie
3.
J Eukaryot Microbiol ; 64(1): 18-30, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27230544

RESUMO

Microsporidia are highly successful parasites that infect virtually all known animal lineages, including the model Danio rerio (zebrafish). The widespread use of this aquatic model for biomedical research has resulted in an unexpected increase in infections from the microsporidium Pseudoloma neurophilia, which can lead to significant physical, behavioral, and immunological modifications, resulting in nonprotocol variation during experimental procedures. Here, we seek to obtain insights into the biology of P. neurophilia by investigating its genome content, which was obtained from only 29 nanograms of DNA using the MiSeq technology and paired-end Illumina sequencing. We found that the genome of P. neurophilia is phylogenetically and genetically related to other fish-microsporidians, but features unique to this intracellular parasite are also found. The small 5.25-Mb genome assembly includes 1,139 unique open-reading frames and an unusually high number of transposable elements for such a small genome. Investigations of intragenomic diversity also provided strong indications that the mononucleate nucleus of this species is diploid. Overall, our study provides insights into the dynamics of microsporidian genomes and a solid sequence reference to be used in future studies of host-parasite interactions using the zebrafish D. rerio and P. neurophilia as a model.


Assuntos
DNA Fúngico/genética , Doenças dos Peixes/microbiologia , Microsporídios/genética , Microsporidiose/veterinária , Peixe-Zebra/microbiologia , Animais , Sequência de Bases , Biodiversidade , Elementos de DNA Transponíveis , DNA Fúngico/análise , DNA Fúngico/isolamento & purificação , Proteínas Fúngicas/genética , Genoma Fúngico , Interações Hospedeiro-Parasita , Microsporidiose/microbiologia , Família Multigênica , Filogenia , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único , Interferência de RNA
4.
Proc Natl Acad Sci U S A ; 110(50): 20117-22, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24277808

RESUMO

The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.


Assuntos
Evolução Molecular , Genoma Fúngico/genética , Glomeromycota/genética , Micorrizas/genética , Plantas/microbiologia , Simbiose/genética , Sequência de Bases , Dados de Sequência Molecular , Análise de Sequência de DNA
5.
Elife ; 72018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30516133

RESUMO

Eukaryotes thought to have evolved clonally for millions of years are referred to as ancient asexuals. The oldest group among these are the arbuscular mycorrhizal fungi (AMF), which are plant symbionts harboring hundreds of nuclei within one continuous cytoplasm. Some AMF strains (dikaryons) harbor two co-existing nucleotypes but there is no direct evidence that such nuclei recombine in this life-stage, as is expected for sexual fungi. Here, we show that AMF nuclei with distinct genotypes can undergo recombination. Inter-nuclear genetic exchange varies in frequency among strains, and despite recombination all nuclear genomes have an average similarity of at least 99.8%. The present study demonstrates that AMF can generate genetic diversity via meiotic-like processes in the absence of observable mating. The AMF dikaryotic life-stage is a primary source of nuclear variability in these organisms, highlighting its potential for strain enhancement of these symbionts.


Assuntos
Núcleo Celular/genética , DNA Fúngico/genética , Genoma Fúngico , Micorrizas/genética , Recombinação Genética , Núcleo Celular/ultraestrutura , Citoplasma/genética , Citoplasma/ultraestrutura , Variação Genética , Genótipo , Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Simbiose
6.
DNA Res ; 25(2): 217-227, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29211832

RESUMO

Arbuscular mycorrhizal fungi (AMF) are a group of soil microorganisms that establish symbioses with the vast majority of land plants. To date, generation of AMF coding information has been limited to model genera that grow well axenically; Rhizoglomus and Gigaspora. Meanwhile, data on the functional gene repertoire of most AMF families is non-existent. Here, we provide primary large-scale transcriptome data from eight poorly studied AMF species (Acaulospora morrowiae, Diversispora versiforme, Scutellospora calospora, Racocetra castanea, Paraglomus brasilianum, Ambispora leptoticha, Claroideoglomus claroideum and Funneliformis mosseae) using ultra-low input ribonucleic acid (RNA)-seq approaches. Our analyses reveals that quiescent spores of many AMF species harbour a diverse functional diversity and solidify known evolutionary relationships within the group. Our findings demonstrate that RNA-seq data obtained from low-input RNA are reliable in comparison to conventional RNA-seq experiments. Thus, our methodology can potentially be used to deepen our understanding of fungal microbial function and phylogeny using minute amounts of RNA material.


Assuntos
Perfilação da Expressão Gênica , Glomeromycota/genética , Filogenia , Glomeromycota/metabolismo , Micorrizas/genética , Micorrizas/metabolismo , Análise de Sequência de RNA , Microbiologia do Solo , Esporos Fúngicos/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA