Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Am Heart J ; 243: 201-209, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610283

RESUMO

BACKGROUND: Neighborhood-level socioeconomic status (SES) is associated with health outcomes, including cardiovascular disease and diabetes, but these associations are rarely studied across large, diverse populations. METHODS: We used Ward's Hierarchical clustering to define eight neighborhood clusters across North Carolina using 11 census-based indicators of SES, race, housing, and urbanicity and assigned 6992 cardiac catheterization patients at Duke University Hospital from 2001 to 2010 to clusters. We examined associations between clusters and coronary artery disease index > 23 (CAD), history of myocardial infarction, hypertension, and diabetes using logistic regression adjusted for age, race, sex, body mass index, region of North Carolina, distance to Duke University Hospital, and smoking status. RESULTS: Four clusters were urban, three rural, and one suburban higher-middle-SES (referent). We observed greater odds of myocardial infarction in all six clusters with lower or middle-SES. Odds of CAD were elevated in the rural cluster that was low-SES and plurality Black (OR 1.16, 95% CI 0.94-1.43) and in the rural cluster that was majority American Indian (OR 1.31, 95% CI 0.91-1.90). Odds of diabetes and hypertension were elevated in two urban and one rural low- and lower-middle SES clusters with large Black populations. CONCLUSIONS: We observed higher prevalence of cardiovascular disease and diabetes in neighborhoods that were predominantly rural, low-SES, and non-White, highlighting the importance of public health and healthcare system outreach into these communities to promote cardiometabolic health and prevent and manage hypertension, diabetes and coronary artery disease.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus , Hipertensão , Infarto do Miocárdio , Cateterismo Cardíaco , Doença da Artéria Coronariana/epidemiologia , Diabetes Mellitus/epidemiologia , Humanos , Hipertensão/epidemiologia , Infarto do Miocárdio/epidemiologia , Características de Residência , Classe Social , Fatores Socioeconômicos
2.
Environ Res ; 214(Pt 1): 113768, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35780850

RESUMO

Exposure to air pollution is a major risk factor for cardiovascular disease, disease risk factors, and mortality. Specifically, particulate matter (PM), and to some extent ozone, are contributors to these effects. In addition, exposures to these pollutants may be especially dangerous for susceptible populations. In this repeated-visit panel study, cardiovascular markers were collected from thirteen male participants with stable coronary artery disease. For 0-4 days prior to the health measurement collections, daily concentrations of fine PM (PM2.5) and ozone were obtained from local central monitoring stations located near the participant's homes. Then, single (PM2.5) and two-pollutant (PM2.5 and ozone) models were used to assess whether there were short-term changes in cardiovascular health markers. Per interquartile range increase in PM2.5, there were decrements in several heart rate variability metrics, including the standard deviation of the normal-to-normal intervals (lag 3, -5.8%, 95% confidence interval (CI) = -11.5, 0.3) and root-mean squared of successive differences (five day moving average, -8.1%, 95% CI = -15.0, -0.7). In addition, increases in PM2.5 were also associated with changes in P complexity (lag 1, 4.4%, 95% CI = 0.5, 8.5), QRS complexity (lag 1, 4.9%, 95% CI = 1.4, 8.5), total cholesterol (five day moving average, -2.1%, 95% CI = -4.1, -0.1), and high-density lipoprotein cholesterol (lag 2, -1.6%, 95% CI = -3.1, -0.1). Comparisons to our previously published work on ozone were conducted. We found that ozone affected inflammation and endothelial function, whereas PM2.5 influenced heart rate variability, repolarization, and lipids. All the health changes from these two studies were found at concentrations below the United States Environmental Protection Agency's National Ambient Air Quality Standards. Our results imply clear differences in the cardiovascular outcomes observed with exposure to the two ubiquitous air pollutants PM2.5 and ozone; this observation suggests different mechanisms of toxicity for these exposures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doença da Artéria Coronariana , Ozônio , Biomarcadores , Colesterol , Exposição Ambiental , Frequência Cardíaca , Humanos , Lipídeos , Masculino , Material Particulado , Estados Unidos
3.
Atmos Environ (1994) ; 2622021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35572717

RESUMO

Multi-city epidemiologic studies examining short-term (daily) differences in fine particulate matter (PM2.5) provide evidence of substantial spatial heterogeneity in city-specific mortality risk estimates across the United States. Because PM2.5 is a mixture of particles, both directly emitted from sources or formed through atmospheric reactions, some of this heterogeneity may be due to regional variations in PM2.5 toxicity. Using inverse variance weighted linear regression, we examined change in percent change in mortality in association with 24 "exposure" determinants representing three basic groupings based on potential explanations for differences in PM toxicity - size, source, and composition. Percent changes in mortality for the PM2.5-mortality association for 313 core-based statistical areas and their metropolitan divisions over 1999-2005 were used as the outcome. Several determinants were identified as potential contributors to heterogeneity: all mass fraction determinants, vehicle miles traveled (VMT) for diesel total, VMT gas per capita, PM2.5 ammonium, PM2.5 nitrate, and PM2.5 sulfate. In multivariable models, only daily correlation of PM2.5 with PM10 and long-term average PM2.5 mass concentration were retained, explaining approximately 10% of total variability. The results of this analysis contribute to the growing body of literature specifically focusing on assessing the underlying basis of the observed spatial heterogeneity in PM2.5-mortality effect estimates, continuing to demonstrate that this heterogeneity is multifactorial and not attributable to a single aspect of PM.

4.
Epidemiology ; 31(1): 103-114, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31592868

RESUMO

BACKGROUND: Epidemiologic studies have reported associations between prenatal and early postnatal air pollution exposure and autism spectrum disorder (ASD); however, findings differ by pollutant and developmental window. OBJECTIVES: We examined associations between early life exposure to particulate matter ≤2.5 µm in diameter (PM2.5) and ozone in association with ASD across multiple US regions. METHODS: Our study participants included 674 children with confirmed ASD and 855 population controls from the Study to Explore Early Development, a multi-site case-control study of children born from 2003 to 2006 in the United States. We used a satellite-based model to assign air pollutant exposure averages during several critical periods of neurodevelopment: 3 months before pregnancy; each trimester of pregnancy; the entire pregnancy; and the first year of life. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs), adjusting for study site, maternal age, maternal education, maternal race/ethnicity, maternal smoking, and month and year of birth. RESULTS: The air pollution-ASD associations appeared to vary by exposure time period. Ozone exposure during the third trimester was associated with ASD, with an OR of 1.2 (95% CI: 1.1, 1.4) per 6.6 ppb increase in ozone. We additionally observed a positive association with PM2.5 exposure during the first year of life (OR = 1.3 [95% CI: 1.0, 1.6] per 1.6 µg/m increase in PM2.5). CONCLUSIONS: Our study corroborates previous findings of a positive association between early life air pollution exposure and ASD, and identifies a potential critical window of exposure during the late prenatal and early postnatal periods.


Assuntos
Poluição do Ar , Transtorno do Espectro Autista , Exposição Materna , Efeitos Tardios da Exposição Pré-Natal , Poluição do Ar/efeitos adversos , Transtorno do Espectro Autista/epidemiologia , Estudos de Casos e Controles , Criança , Feminino , Humanos , Masculino , Exposição Materna/efeitos adversos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Estados Unidos/epidemiologia
5.
Indoor Air ; 30(1): 24-30, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31539172

RESUMO

Household air pollution (HAP) is estimated to be an important risk factor for cardiovascular disease, but little clinical evidence exists and collecting biomarkers of disease risk is difficult in low-resource settings. Among 54 Nicaraguan women with woodburning cookstoves, we evaluated cross-sectional associations between 48-hour measures of HAP (eg, fine particulate matter, PM2.5 ) and C-reactive protein (CRP) via dried blood spots; secondary analyses included seven additional biomarkers of systemic injury and inflammation. We conducted sub-studies to calculate the intraclass correlation coefficient (ICC) in biomarkers collected over four consecutive days in Nicaragua and to assess the validity of measuring biomarkers in dried blood by calculating the correlation with paired venous-drawn samples in Colorado. Measures of HAP were associated with CRP (eg, a 25% increase in indoor PM2.5 was associated with a 7.4% increase in CRP [95% confidence interval: 0.7, 14.5]). Most of the variability in CRP concentrations over the 4-day period was between-person (ICC: 0.88), and CRP concentrations were highly correlated between paired dried blood and venous-drawn serum (Spearman ρ = .96). Results for secondary biomarkers were primarily consistent with null associations, and the sub-study ICCs and correlations were lower. Assessing CRP via dried blood spots provides a feasible approach to elucidate the association between HAP and cardiovascular disease risk.


Assuntos
Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Proteína C-Reativa/metabolismo , Exposição por Inalação/estatística & dados numéricos , Adulto , Poluição do Ar , Biomarcadores/sangue , Colorado , Culinária/métodos , Culinária/estatística & dados numéricos , Feminino , Humanos , Exposição por Inalação/análise , Pessoa de Meia-Idade , Nicarágua
6.
Arterioscler Thromb Vasc Biol ; 38(1): 275-282, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191927

RESUMO

OBJECTIVE: Exposure to mobile source emissions is nearly ubiquitous in developed nations and is associated with multiple adverse health outcomes. There is an ongoing need to understand the specificity of traffic exposure associations with vascular outcomes, particularly in individuals with cardiovascular disease. APPROACH AND RESULTS: We performed a cross-sectional study using 2124 individuals residing in North Carolina, United States, who received a cardiac catheterization at the Duke University Medical Center. Traffic-related exposure was assessed via 2 metrics: (1) the distance between the primary residence and the nearest major roadway; and (2) location of the primary residence in regions defined based on local traffic patterns. We examined 4 cardiovascular disease outcomes: hypertension, peripheral arterial disease, the number of diseased coronary vessels, and recent myocardial infarction. Statistical models were adjusted for race, sex, smoking, type 2 diabetes mellitus, body mass index, hyperlipidemia, and home value. Results are expressed in terms of the odds ratio (OR). A 23% decrease in residential distance to major roadways was associated with higher prevalence of peripheral arterial disease (OR=1.29; 95% confidence interval, 1.08-1.55) and hypertension (OR=1.15; 95% confidence interval, 1.01-1.31). Associations with peripheral arterial disease were strongest in men (OR=1.42; 95% confidence interval, 1.17-1.74) while associations with hypertension were strongest in women (OR=1.21; 95% confidence interval, 0.99-1.49). Neither myocardial infarction nor the number of diseased coronary vessels were associated with traffic exposure. CONCLUSIONS: Traffic-related exposure is associated with peripheral arterial disease and hypertension while no associations are observed for 2 coronary-specific vascular outcomes.


Assuntos
Cateterismo Cardíaco , Hipertensão/diagnóstico , Hipertensão/epidemiologia , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/epidemiologia , Características de Residência , Poluição Relacionada com o Tráfego/efeitos adversos , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/epidemiologia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/epidemiologia , North Carolina/epidemiologia , Prevalência , Medição de Risco , Fatores de Risco
7.
Environ Res ; 161: 364-369, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29195185

RESUMO

BACKGROUND: In 1997 the U.S. Environmental Protection Agency set the first annual National Ambient Air Quality Standard (NAAQS) for fine particulate matter (PM2.5). Although the weight of scientific evidence has determined that a causal relationship exists between PM2.5 exposures and cardiovascular effects, few studies have concluded whether NAAQS-related reductions in PM2.5 led to improvements in public health. METHODS: We examined the change in cardiovascular (CV) mortality rate and the association between change in PM2.5 and change in CV-mortality rate before (2000-2004) and after implementation of the 1997 annual PM2.5 NAAQS (2005-2010) among U.S. counties. We further examined how the association varied with respect to two factors related to NAAQS compliance: attainment status and design values (DV). We used difference-in-differences and linear regression models, adjusted for sociodemographic confounders. FINDINGS: Across 619 counties, there were 1.10 (95% CI: 0.37, 1.82) fewer CV-deaths per year per 100,000 people for each 1µg/m3 decrease in PM2.5. Nonattainment counties had a twofold larger reduction in mean annual PM2.5, 2.1µg/m3, compared to attainment counties, 0.97µg/m3. CV-mortality rate decreased by 0.59 (95% CI: -0.54, 1.71) in nonattainment and 1.96 (95% CI: 0.77, 3.15) deaths per 100,000 people for each 1µg/m3 decrease in PM2.5 in attainment counties. When stratifying counties by DV, results were similar: counties with DV greater than 15µg/m3 experienced the greatest decrease in mean annual PM2.5 (2.29µg/m3) but the smallest decrease in CV-mortality rate per unit decrease in PM2.5, 0.73 (95% CI: -0.57, 2.02). INTERPRETATION: We report a significant association between the change in PM2.5 and the change in CV-mortality rate before and after the implementation of NAAQS and note that the health benefits per 1µg/m3 decrease in PM2.5 persist at levels below the current national standard. FUNDING: US EPA intermural research.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Adulto , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Doenças Cardiovasculares/mortalidade , Humanos , Material Particulado , Estados Unidos/epidemiologia , United States Environmental Protection Agency
8.
Part Fibre Toxicol ; 15(1): 38, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30305173

RESUMO

BACKGROUND: Air pollution-induced changes in cardiac electrophysiological properties could be a pathway linking air pollution and cardiovascular events. The evidence of air pollution effects on the cardiac conduction system is incomplete yet. We investigated short-term effects of particulate matter ≤ 2.5 µm in aerodynamic diameter (PM2.5) and ozone (O3) on cardiac electrical impulse propagation and repolarization as recorded in surface electrocardiograms (ECG). METHODS: We analyzed repeated 12-lead ECG measurements performed on 5,332 patients between 2001 and 2012. The participants came from the Duke CATHGEN Study who underwent cardiac catheterization and resided in North Carolina, United States (NC, U.S.). Daily concentrations of PM2.5 and O3 at each participant's home address were predicted with a hybrid air quality exposure model. We used generalized additive mixed models to investigate the associations of PM2.5 and O3 with the PR interval, QRS interval, heart rate-corrected QT interval (QTc), and heart rate (HR). The temporal lag structures of the associations were examined using distributed-lag models. RESULTS: Elevated PM2.5 and O3 were associated with four-day lagged lengthening of the PR and QRS intervals, and with one-day lagged increases in HR. We observed immediate effects on the lengthening of the QTc interval for both PM2.5 and O3, as well as delayed effects for PM2.5 (lagged by 3 - 4 days). The associations of PM2.5 and O3 with the PR interval and the association of O3 with the QRS interval persisted until up to seven days after exposure. CONCLUSIONS: In patients undergoing cardiac catheterization, short-term exposure to air pollution was associated with increased HR and delays in atrioventricular conduction, ventricular depolarization and repolarization.


Assuntos
Poluentes Atmosféricos/análise , Cateterismo Cardíaco , Exposição Ambiental/efeitos adversos , Sistema de Condução Cardíaco/efeitos dos fármacos , Ozônio/análise , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Eletrocardiografia , Exposição Ambiental/análise , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , North Carolina , Ozônio/toxicidade , Tamanho da Partícula , Material Particulado/toxicidade , Fatores de Tempo
9.
Environ Res ; 159: 16-23, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28763730

RESUMO

BACKGROUND: Adverse cardiovascular events have been linked with PM2.5 exposure obtained primarily from air quality monitors, which rarely co-locate with participant residences. Modeled PM2.5 predictions at finer resolution may more accurately predict residential exposure; however few studies have compared results across different exposure assessment methods. METHODS: We utilized a cohort of 5679 patients who had undergone a cardiac catheterization between 2002-2009 and resided in NC. Exposure to PM2.5 for the year prior to catheterization was estimated using data from air quality monitors (AQS), Community Multiscale Air Quality (CMAQ) fused models at the census tract and 12km spatial resolutions, and satellite-based models at 10km and 1km resolutions. Case status was either a coronary artery disease (CAD) index >23 or a recent myocardial infarction (MI). Logistic regression was used to model odds of having CAD or an MI with each 1-unit (µg/m3) increase in PM2.5, adjusting for sex, race, smoking status, socioeconomic status, and urban/rural status. RESULTS: We found that the elevated odds for CAD>23 and MI were nearly equivalent for all exposure assessment methods. One difference was that data from AQS and the census tract CMAQ showed a rural/urban difference in relative risk, which was not apparent with the satellite or 12km-CMAQ models. CONCLUSIONS: Long-term air pollution exposure was associated with coronary artery disease for both modeled and monitored data.


Assuntos
Poluentes Atmosféricos/análise , Doença da Artéria Coronariana/epidemiologia , Exposição Ambiental , Monitoramento Ambiental/métodos , Infarto do Miocárdio/epidemiologia , Material Particulado/análise , Idoso , Cateterismo Cardíaco , Doença da Artéria Coronariana/induzido quimicamente , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/induzido quimicamente , North Carolina/epidemiologia , Tamanho da Partícula , Prevalência
10.
Environ Health ; 16(1): 126, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29157250

RESUMO

BACKGROUND: Air pollution is a major risk factor for cardiovascular disease, of which ozone is a major contributor. Several studies have found associations between ozone and cardiovascular morbidity, but the results have been inconclusive. We investigated associations between ozone and changes across biological pathways associated with cardiovascular disease. METHODS: Using a panel study design, 13 participants with coronary artery disease were assessed for markers of systemic inflammation, heart rate variability and repolarization, lipids, blood pressure, and endothelial function. Daily measurements of ozone and particulate matter (PM2.5) were obtained from central monitoring stations. Single (ozone) and two-pollutant (ozone and PM2.5) models were used to assess percent changes in measurements per interquartile ranges of pollutants. RESULTS: Per interquartile increase in ozone, changes in tissue plasminogen factor (6.6%, 95% confidence intervals (CI) = 0.4, 13.2), plasminogen activator inhibitor-1 (40.5%, 95% CI = 8.7, 81.6), neutrophils (8.7% 95% CI = 1.5, 16.4), monocytes (10.2%, 95% CI = 1.0, 20.1), interleukin-6 (15.9%, 95% CI = 3.6, 29.6), large-artery elasticity index (-19.5%, 95% CI = -34.0, -1.7), and the baseline diameter of the brachial artery (-2.5%, 95% CI = -5.0, 0.1) were observed. These associations were robust in the two-pollutant model. CONCLUSIONS: We observed alterations across several pathways associated with cardiovascular disease in 13 coronary artery disease patients following ozone exposures, independent of PM2.5. The results support the biological plausibility of ozone-induced cardiovascular effects. The effects were found at concentrations below the EPA National Ambient Air Quality Standards for both ozone and PM2.5.


Assuntos
Poluentes Atmosféricos/toxicidade , Doença da Artéria Coronariana/fisiopatologia , Ozônio/toxicidade , Idoso , Poluentes Atmosféricos/análise , Doença da Artéria Coronariana/sangue , Elasticidade , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Fibrinólise/efeitos dos fármacos , Humanos , Inflamação/sangue , Inflamação/induzido quimicamente , Inflamação/fisiopatologia , Masculino , Pessoa de Meia-Idade , Ozônio/análise , Inibidor 1 de Ativador de Plasminogênio/sangue , Ativador de Plasminogênio Tecidual/sangue
11.
Environ Res ; 145: 9-17, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26613345

RESUMO

BACKGROUND: Epidemiological studies have identified associations between long-term PM2.5 exposure and cardiovascular events, though most have relied on concentrations from central-site air quality monitors. METHODS: We utilized a cohort of 5679 patients who had undergone cardiac catheterization at Duke University between 2002-2009 and resided in North Carolina. We used estimates of daily PM2.5 concentrations for North Carolina during the study period based on satellite derived Aerosol Optical Depth (AOD) measurements and PM2.5 concentrations from ground monitors, which were spatially resolved with a 10×10km resolution, matched to each patient's residential address and averaged for the year prior to catheterization. The Coronary Artery Disease (CAD) index was used to measure severity of CAD; scores >23 represent a hemodynamically significant coronary artery lesion in at least one major coronary vessel. Logistic regression modeled odds of having CAD or an MI with each 1µg/m(3) increase in annual average PM2.5, adjusting for sex, race, smoking status and socioeconomic status. RESULTS: In adjusted models, a 1µg/m(3) increase in annual average PM2.5 was associated with an 11.1% relative increase in the odds of significant CAD (95% CI: 4.0-18.6%) and a 14.2% increase in the odds of having a myocardial infarction (MI) within a year prior (95% CI: 3.7-25.8%). CONCLUSIONS: Satellite-based estimates of long-term PM2.5 exposure were associated with both coronary artery disease (CAD) and incidence of myocardial infarction (MI) in a cohort of cardiac catheterization patients.


Assuntos
Doença da Artéria Coronariana/epidemiologia , Exposição Ambiental/análise , Material Particulado/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Doença da Artéria Coronariana/etiologia , Exposição Ambiental/estatística & dados numéricos , Feminino , Humanos , Incidência , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , North Carolina/epidemiologia , Tamanho da Partícula , Material Particulado/toxicidade , Comunicações Via Satélite , Análise Espaço-Temporal , Adulto Jovem
12.
Environ Res ; 151: 224-232, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27500855

RESUMO

BACKGROUND: Epidemiological studies have shown associations between air temperature and cardiovascular health outcomes. Metabolic dysregulation might also play a role in the development of cardiovascular disease. OBJECTIVES: To investigate short-term temperature effects on metabolites related to cardiovascular disease. METHODS: Concentrations of 45 acylcarnitines, 15 amino acids, ketone bodies and total free fatty acids were available in 2869 participants from the CATHeterization GENetics cohort recruited at the Duke University Cardiac Catheterization Clinic (Durham, NC) between 2001 and 2007. Ten metabolites were selected based on quality criteria and cluster analysis. Daily averages of meteorological variables were obtained from the North American Regional Reanalysis project. Immediate, lagged, and cumulative temperature effects on metabolite concentrations were analyzed using (piecewise) linear regression models. RESULTS: Linear temperature effects were found for glycine, C16-OH:C14:1-DC, and aspartic acid/asparagine. A 5°C increase in temperature was associated with a 1.8% [95%-confidence interval: 0.3%; 3.3%] increase in glycine (5-day average), a 3.2% [0.1%; 6.3%] increase in C16-OH:C14:1-DC (lag of four days), and a -1.4% [-2.4%; -0.3%] decrease in aspartic acid/asparagine (lag of two days). Non-linear temperature effects were observed for alanine and total ketone bodies with breakpoint of 4°C and 20°C, respectively. Both a 5°C decrease in temperature on colder days (<4°C)and a 5°C increase in temperature on warmer days (≥4°C) were associated with a four day delayed increase in alanine by 6.6% [11.7; 1.8%] and 1.9% [0.3%; 3.4%], respectively. For ketone bodies we found immediate (0-day lag) increases of 4.2% [-0.5%; 9.1%] and 12.3% [0.1%; 26.0%] associated with 5°C decreases on colder (<20°C) days and 5°C increases on warmer days (≥20°C), respectively. CONCLUSIONS: We observed multiple effects of air temperature on metabolites several of which are reported to be involved in cardiovascular disease. Our findings might help to understand the link between air temperature and cardiovascular disease.


Assuntos
Sangue/metabolismo , Temperatura , Idoso , Poluição do Ar , Biomarcadores/sangue , Cateterismo Cardíaco , Doenças Cardiovasculares/sangue , Análise por Conglomerados , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tempo (Meteorologia)
13.
Environ Health ; 14: 66, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26276052

RESUMO

BACKGROUND: Previous human exposure studies of traffic-related air pollutants have demonstrated adverse health effects in human populations by comparing areas of high and low traffic, but few studies have utilized microenvironmental monitoring of pollutants at multiple traffic locations while looking at a vast array of health endpoints in the same population. We evaluated inflammatory markers, heart rate variability (HRV), blood pressure, exhaled nitric oxide, and lung function in healthy participants after exposures to varying mixtures of traffic pollutants. METHODS: A repeated-measures, crossover study design was used in which 23 healthy, non-smoking adults had clinical cardiopulmonary and systemic inflammatory measurements taken prior to, immediately after, and 24 hours after intermittent walking for two hours in the summer months along three diverse roadways having unique emission characteristics. Measurements of PM2.5, PM10, black carbon (BC), elemental carbon (EC), and organic carbon (OC) were collected. Mixed effect models were used to assess changes in health effects associated with these specific pollutant classes. RESULTS: Minimal associations were observed with lung function measurements and the pollutants measured. Small decreases in BP measurements and rMSSD, and increases in IL-1ß and the low frequency to high frequency ratio measured in HRV, were observed with increasing concentrations of PM2.5 EC. CONCLUSIONS: Small, acute changes in cardiovascular and inflammation-related effects of microenvironmental exposures to traffic-related air pollution were observed in a group of healthy young adults. The associations were most profound with the diesel-source EC.


Assuntos
Poluentes Atmosféricos/toxicidade , Pressão Sanguínea/efeitos dos fármacos , Exposição Ambiental , Frequência Cardíaca/efeitos dos fármacos , Inflamação/epidemiologia , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Adolescente , Adulto , Estudos Cross-Over , Feminino , Humanos , Inflamação/induzido quimicamente , Masculino , New Jersey/epidemiologia , New York/epidemiologia , Adulto Jovem
14.
Environ Res ; 134: 331-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25199974

RESUMO

Several studies have reported an association between air pollution and endothelial dysfunction, especially in individuals having diabetes. However, very few studies have examined the impact of air temperature on endothelial function. The objective of this analysis was to investigate short-term effects of temperature and ozone on endothelial function in individuals having diabetes. Moreover, we investigated interactive effects between air temperature and air pollution on markers of endothelial function. Between November 2004 and December 2005 flow-mediated dilatation (FMD), nitroglycerin-mediated dilatation (NTGMD) and several blood markers representing endothelial function were measured using brachial artery ultrasound on four consecutive days in 22 individuals with type-2 diabetes mellitus in Chapel Hill, North Carolina (USA). Daily measurements of meteorological parameters, ozone and particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5) were obtained from fixed monitoring sites. We used additive mixed-models adjusting for time trend, day of the week, relative humidity and barometric pressure to assess temperature and ozone associations with endothelial function. A 1 °C decrease in the 24-h temperature average was associated with a decrease in mean FMD on the same day (-2.2% (95%-confidence interval:[-4.7;0.3%])) and with a delay of one and four days. A temperature decrement also led to an immediate (-1.7%[-3.3;-0.04]) decrease in NTGMD. Moreover, we observed an immediate (-14.6%[-26.3;-2.9%]) and a one day delayed (-13.5%[-27.0; 0.04%]) decrease in FMD in association with a 0.01 ppm increase in the maximum 8-h moving average of ozone. Temperature effects on FMD strengthened when PM2.5 and ozone concentrations were high. The associations were similar during winter and summer. We detected an association between temperature decreases and ozone increases on endothelial dysfunction in individuals having diabetes. We conclude that endothelial dysfunction might be a possible mechanism explaining cardiovascular events in association with environmental stimuli.


Assuntos
Ar , Diabetes Mellitus Tipo 2/fisiopatologia , Endotélio Vascular/efeitos dos fármacos , Ozônio/análise , Temperatura , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ozônio/farmacologia
15.
Environ Int ; 178: 108005, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437316

RESUMO

Many United States (US) cities are experiencing urban heat islands (UHIs) and climate change-driven temperature increases. Extreme heat increases cardiovascular disease (CVD) risk, yet little is known about how this association varies with UHI intensity (UHII) within and between cities. We aimed to identify the urban populations most at-risk of and burdened by heat-related CVD morbidity in UHI-affected areas compared to unaffected areas. ZIP code-level daily counts of CVD hospitalizations among Medicare enrollees, aged 65-114, were obtained for 120 US metropolitan statistical areas (MSAs) between 2000 and 2017. Mean ambient temperature exposure was estimated by interpolating daily weather station observations. ZIP codes were classified as low and high UHII using the first and fourth quartiles of an existing surface UHII metric, weighted to each have 25% of all CVD hospitalizations. MSA-specific associations between ambient temperature and CVD hospitalization were estimated using quasi-Poisson regression with distributed lag non-linear models and pooled via multivariate meta-analyses. Across the US, extreme heat (MSA-specific 99th percentile, on average 28.6 °C) increased the risk of CVD hospitalization by 1.5% (95% CI: 0.4%, 2.6%), with considerable variation among MSAs. Extreme heat-related CVD hospitalization risk in high UHII areas (2.4% [95% CI: 0.4%, 4.3%]) exceeded that in low UHII areas (1.0% [95% CI: -0.8%, 2.8%]), with upwards of a 10% difference in some MSAs. During the 18-year study period, there were an estimated 37,028 (95% CI: 35,741, 37,988) heat-attributable CVD admissions. High UHII areas accounted for 35% of the total heat-related CVD burden, while low UHII areas accounted for 4%. High UHII disproportionately impacted already heat-vulnerable populations; females, individuals aged 75-114, and those with chronic conditions living in high UHII areas experienced the largest heat-related CVD impacts. Overall, extreme heat increased cardiovascular morbidity risk and burden in older urban populations, with UHIs exacerbating these impacts among those with existing vulnerabilities.


Assuntos
Doenças Cardiovasculares , Temperatura Alta , Idoso , Feminino , Humanos , Doenças Cardiovasculares/epidemiologia , Cidades/epidemiologia , Medicare , Fatores de Tempo , Estados Unidos/epidemiologia , Idoso de 80 Anos ou mais
16.
Am J Epidemiol ; 176(7): 622-34, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22984096

RESUMO

With the advent of multicity studies, uniform statistical approaches have been developed to examine air pollution-mortality associations across cities. To assess the sensitivity of the air pollution-mortality association to different model specifications in a single and multipollutant context, the authors applied various regression models developed in previous multicity time-series studies of air pollution and mortality to data from Philadelphia, Pennsylvania (May 1992-September 1995). Single-pollutant analyses used daily cardiovascular mortality, fine particulate matter (particles with an aerodynamic diameter ≤2.5 µm; PM(2.5)), speciated PM(2.5), and gaseous pollutant data, while multipollutant analyses used source factors identified through principal component analysis. In single-pollutant analyses, risk estimates were relatively consistent across models for most PM(2.5) components and gaseous pollutants. However, risk estimates were inconsistent for ozone in all-year and warm-season analyses. Principal component analysis yielded factors with species associated with traffic, crustal material, residual oil, and coal. Risk estimates for these factors exhibited less sensitivity to alternative regression models compared with single-pollutant models. Factors associated with traffic and crustal material showed consistently positive associations in the warm season, while the coal combustion factor showed consistently positive associations in the cold season. Overall, mortality risk estimates examined using a source-oriented approach yielded more stable and precise risk estimates, compared with single-pollutant analyses.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Doenças Cardiovasculares/mortalidade , Interpretação Estatística de Dados , Exposição Ambiental/efeitos adversos , Modelos Estatísticos , Material Particulado/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Doenças Cardiovasculares/etiologia , Exposição Ambiental/análise , Humanos , Material Particulado/análise , Material Particulado/química , Philadelphia , Análise de Componente Principal , Análise de Regressão , Fatores de Risco , Estações do Ano
17.
Am J Epidemiol ; 176 Suppl 7: S131-41, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23035137

RESUMO

Investigators examined 5,654 children enrolled in the El Paso, Texas, public school district by questionnaire in 2001. Exposure measurements were first collected in the late fall of 1999. School-level and residence-level exposures to traffic-related air pollutants were estimated using a land use regression model. For 1,529 children with spirometry, overall geographic information system (GIS)-modeled residential levels of traffic-related ambient air pollution (calibrated to a 10-ppb increment in nitrogen dioxide levels) were associated with a 2.4% decrement in forced vital capacity (95% confidence interval (CI): -4.0, -0.7) after adjustment for demographic, anthropomorphic, and socioeconomic factors and spirometer/technician effects. After adjustment for these potential covariates, overall GIS-modeled residential levels of traffic-related ambient air pollution (calibrated to a 10-ppb increment in nitrogen dioxide levels) were associated with pulmonary function levels below 85% of those predicted for both forced vital capacity (odds ratio (OR) = 3.10, 95% CI: 1.65, 5.78) and forced expiratory volume in 1 second (OR = 2.35, 95% CI: 1.38, 4.01). For children attending schools at elevations above 1,170 m, a 10-ppb increment in modeled nitrogen dioxide levels was associated with current asthma (OR = 1.56, 95% CI: 1.08, 2.50) after adjustment for demographic, socioeconomic, and parental factors and random school effects. These results are consistent with previous studies in Europe and California that found adverse health outcomes in children associated with modeled traffic-related air pollutants.


Assuntos
Poluição do Ar/efeitos adversos , Pneumopatias/induzido quimicamente , Poluição do Ar/estatística & dados numéricos , Criança , Feminino , Sistemas de Informação Geográfica , Humanos , Modelos Logísticos , Pneumopatias/epidemiologia , Masculino , Veículos Automotores/estatística & dados numéricos , Dióxido de Nitrogênio/efeitos adversos , Razão de Chances , Espirometria , Texas/epidemiologia , População Urbana/estatística & dados numéricos
18.
Environ Health ; 11: 71, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23006928

RESUMO

BACKGROUND: Characterizing factors which determine susceptibility to air pollution is an important step in understanding the distribution of risk in a population and is critical for setting appropriate policies. We evaluate general and specific measures of community health as modifiers of risk for asthma and congestive heart failure following an episode of acute exposure to wildfire smoke. METHODS: A population-based study of emergency department visits and daily concentrations of fine particulate matter during a wildfire in North Carolina was performed. Determinants of community health defined by County Health Rankings were evaluated as modifiers of the relative risk. A total of 40 mostly rural counties were included in the study. These rankings measure factors influencing health: health behaviors, access and quality of clinical care, social and economic factors, and physical environment, as well as, the outcomes of health: premature mortality and morbidity. Pollutant concentrations were obtained from a mathematically modeled smoke forecasting system. Estimates of relative risk for emergency department visits were based on Poisson mixed effects regression models applied to daily visit counts. RESULTS: For asthma, the strongest association was observed at lag day 0 with excess relative risk of 66% (28,117). For congestive heart failure the excess relative risk was 42% (5,93). The largest difference in risk was observed after stratifying on the basis of Socio-Economic Factors. Difference in risk between bottom and top ranked counties by Socio-Economic Factors was 85% and 124% for asthma and congestive heart failure respectively. CONCLUSIONS: The results indicate that Socio-Economic Factors should be considered as modifying risk factors in air pollution studies and be evaluated in the assessment of air pollution impacts.


Assuntos
Poluição do Ar/efeitos adversos , Asma/epidemiologia , Incêndios , Insuficiência Cardíaca/epidemiologia , Fumaça/efeitos adversos , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Asma/etiologia , Serviço Hospitalar de Emergência/estatística & dados numéricos , Comportamentos Relacionados com a Saúde , Acessibilidade aos Serviços de Saúde , Insuficiência Cardíaca/induzido quimicamente , Humanos , Pessoa de Meia-Idade , North Carolina , Risco , População Rural/estatística & dados numéricos , Fumaça/análise , Fatores Socioeconômicos , Adulto Jovem
19.
ScientificWorldJournal ; 2012: 865150, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226985

RESUMO

Spatial analysis studies have included the application of land use regression models (LURs) for health and air quality assessments. Recent LUR studies have collected nitrogen dioxide (NO(2)) and volatile organic compounds (VOCs) using passive samplers at urban air monitoring networks in El Paso and Dallas, TX, Detroit, MI, and Cleveland, OH to assess spatial variability and source influences. LURs were successfully developed to estimate pollutant concentrations throughout the study areas. Comparisons of development and predictive capabilities of LURs from these four cities are presented to address this issue of uniform application of LURs across study areas. Traffic and other urban variables were important predictors in the LURs although city-specific influences (such as border crossings) were also important. In addition, transferability of variables or LURs from one city to another may be problematic due to intercity differences and data availability or comparability. Thus, developing common predictors in future LURs may be difficult.


Assuntos
Benzeno/análise , Dióxido de Nitrogênio/análise , Cidades , Monitoramento Ambiental , Modelos Teóricos , Estados Unidos
20.
Int J Hyg Environ Health ; 241: 113949, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35259686

RESUMO

Household air pollution from solid fuel combustion was estimated to cause 2.31 million deaths worldwide in 2019; cardiovascular disease is a substantial contributor to the global burden. We evaluated the cross-sectional association between household air pollution (24-h gravimetric kitchen and personal particulate matter (PM2.5) and black carbon (BC)) and C-reactive protein (CRP) measured in dried blood spots among 107 women in rural Honduras using wood-burning traditional or Justa (an engineered combustion chamber) stoves. A suite of 6 additional markers of systemic injury and inflammation were considered in secondary analyses. We adjusted for potential confounders and assessed effect modification of several cardiovascular-disease risk factors. The median (25th, 75th percentiles) 24-h-average personal PM2.5 concentration was 115 µg/m3 (65,154 µg/m3) for traditional stove users and 52 µg/m3 (39, 81 µg/m3) for Justa stove users; kitchen PM2.5 and BC had similar patterns. Higher concentrations of PM2.5 and BC were associated with higher levels of CRP (e.g., a 25% increase in personal PM2.5 was associated with a 10.5% increase in CRP [95% CI: 1.2-20.6]). In secondary analyses, results were generally consistent with a null association. Evidence for effect modification between pollutant measures and four different cardiovascular risk factors (e.g., high blood pressure) was inconsistent. These results support the growing evidence linking household air pollution and cardiovascular disease.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Proteína C-Reativa , Culinária/métodos , Estudos Transversais , Feminino , Honduras/epidemiologia , Humanos , Material Particulado/análise , Madeira/análise , Madeira/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA