Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 120(2): 334-351, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472026

RESUMO

Damage to arterial vessel walls leads to the formation of platelet aggregate, which acts as a physical obstacle for bleeding. An arterial thrombus is heterogeneous; it has a dense inner part (core) and an unstable outer part (shell). The thrombus shell is very dynamic, being composed of loosely connected discoid platelets. The mechanisms underlying the observed mobility of the shell and its (patho)physiological implications are unclear. To investigate arterial thrombus mechanics, we developed a novel, to our knowledge, two-dimensional particle-based computational model of microvessel thrombosis. The model considers two types of interplatelet interactions: primary reversible (glycoprotein Ib (GPIb)-mediated) and stronger integrin-mediated interaction, which intensifies with platelet activation. At high shear rates, the former interaction leads to adhesion, and the latter is primarily responsible for stable platelet aggregation. Using a stochastic model of GPIb-mediated interaction, we initially reproduced experimental curves that characterize individual platelet interactions with a von Willebrand factor-coated surface. The addition of the second stabilizing interaction results in thrombus formation. The comparison of thrombus dynamics with experimental data allowed us to estimate the magnitude of critical interplatelet forces in the thrombus shell and the characteristic time of platelet activation. The model predicts moderate dependence of maximal thrombus height on the injury size in the absence of thrombin activity. We demonstrate that the developed stochastic model reproduces the observed highly dynamic behavior of the thrombus shell. The presence of primary stochastic interaction between platelets leads to the properties of thrombus consistent with in vivo findings; it does not grow upstream of the injury site and covers the whole injury from the first seconds of the formation. А simplified model, in which GPIb-mediated interaction is deterministic, does not reproduce these features. Thus, the stochasticity of platelet interactions is critical for thrombus plasticity, suggesting that interaction via a small number of bonds drives the dynamics of arterial thrombus shell.


Assuntos
Complexo Glicoproteico GPIb-IX de Plaquetas , Trombose , Plaquetas , Humanos , Adesividade Plaquetária , Agregação Plaquetária , Fator de von Willebrand
2.
Blood ; 128(13): 1745-55, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27432876

RESUMO

Binding of coagulation factors to phosphatidylserine (PS)-exposing procoagulant-activated platelets followed by formation of the membrane-dependent enzyme complexes is critical for blood coagulation. Procoagulant platelets formed upon strong platelet stimulation, usually with thrombin plus collagen, are large "balloons" with a small (∼1 µm radius) "cap"-like convex region that is enriched with adhesive proteins. Spatial distribution of blood coagulation factors on the surface of procoagulant platelets was investigated using confocal microscopy. All of them, including factors IXa (FIXa), FXa/FX, FVa, FVIII, prothrombin, and PS-sensitive marker Annexin V were distributed nonhomogeneously: they were primarily localized in the "cap," where their mean concentration was by at least an order of magnitude, higher than on the "balloon." Assembly of intrinsic tenase on liposomes with various PS densities while keeping the PS content constant demonstrated that such enrichment can accelerate this reaction by 2 orders of magnitude. The mechanisms of such acceleration were investigated using a 3-dimensional computer simulation model of intrinsic tenase based on these data. Transmission electron microscopy and focal ion beam-scanning electron microscopy with Annexin V immunogold-labeling revealed a complex organization of the "caps." In platelet thrombi formed in whole blood on collagen under arterial shear conditions, ubiquitous "caps" with increased Annexin V, FX, and FXa binding were observed, indicating relevance of this mechanism for surface-attached platelets under physiological flow. These results reveal an essential heterogeneity in the surface distribution of major coagulation factors on the surface of procoagulant platelets and suggest its importance in promoting membrane-dependent coagulation reactions.


Assuntos
Fatores de Coagulação Sanguínea/metabolismo , Coagulação Sanguínea/fisiologia , Plaquetas/metabolismo , Adulto , Anexina A5/metabolismo , Plaquetas/ultraestrutura , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Simulação por Computador , Humanos , Imageamento Tridimensional , Técnicas In Vitro , Microscopia Confocal , Microscopia Imunoeletrônica , Fosfatidilserinas/sangue , Ativação Plaquetária/fisiologia , Ligação Proteica , Trombina/metabolismo , Trombose/metabolismo , Trombose/patologia
3.
BMC Genomics ; 17(1): 973, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27884105

RESUMO

BACKGROUND: The general structure and action of all eukaryotic and archaeal RNA polymerases machinery have an astonishing similarity despite the diversity of core promoter sequences in different species. The goal of our work is to find common characteristics of DNA region that define it as a promoter for the RNA polymerase II (Pol II). RESULTS: The profiles of a large number of physical and structural characteristics, averaged over representative sets of the Pol II minimal core promoters of the evolutionary divergent species from animals, plants and unicellular fungi were analysed. In addition to the characteristics defined at the base-pair steps, we, for the first time, use profiles of the ultrasonic cleavage and DNase I cleavage indexes, informative for internal properties of each complementary strand. CONCLUSIONS: DNA of the core promoters of metazoans and Schizosaccharomyces pombe has similar structural organization. Its mechanical and 3D structural characteristics have singular properties at the positions of TATA-box. The minor groove is broadened and conformational motion is decreased in that region. Special characteristics of conformational behavior are revealed in metazoans at the region, which connects the end of TATA-box and the transcription start site (TSS). The intensities of conformational motions in the complementary strands are periodically changed in opposite phases. They are noticeable, best of all, in mammals. Such conformational features are lacking in the core promoters of S. pombe. The profiles of Saccharomyces cerevisiae core promoters significantly differ: their singular region is shifted down thus pointing to the uniqueness of their structural organization. Obtained results may be useful in genetic engineering for artificial modulation of the promoter strength.


Assuntos
Regiões Promotoras Genéticas , RNA Polimerase II/química , RNA Polimerase II/genética , Animais , Sequência de Bases , Clivagem do DNA , Variação Genética , Humanos , Motivos de Nucleotídeos , Schizosaccharomyces/genética , TATA Box , Sítio de Iniciação de Transcrição
4.
J Thromb Haemost ; 22(6): 1550-1557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460839

RESUMO

Platelets are well-known players in several cardiovascular diseases such as atherosclerosis and venous thrombosis. There is increasing evidence demonstrating that reactive oxygen species (ROS) are generated within activated platelets. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a major source of ROS generation in platelets. Ligand binding to platelet receptor glycoprotein (GP) VI stimulates intracellular ROS generation consisting of a spleen tyrosine kinase-independent production involving NOX activation and a following spleen tyrosine kinase-dependent generation. In addition to GPVI, stimulation of platelet thrombin receptors (protease-activated receptors [PARs]) can also trigger NOX-derived ROS production. Our recent study found that mitochondria-derived ROS production can be induced by engagement of thrombin receptors but not by GPVI, indicating that mitochondria are another source of PAR-dependent ROS generation apart from NOX. However, mitochondria are not involved in GPVI-dependent ROS generation. Once generated, the intracellular ROS are also involved in modulating platelet function and thrombus formation; therefore, the site-specific targeting of ROS production or clearance of excess ROS within platelets is a potential intervention and treatment option for thrombotic events. In this review, we will summarize the signaling pathways involving regulation of platelet ROS production and their role in platelet function and thrombosis, with a focus on GPVI- and PAR-dependent platelet responses.


Assuntos
Plaquetas , Oxirredução , Espécies Reativas de Oxigênio , Transdução de Sinais , Trombose , Humanos , Plaquetas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trombose/sangue , Glicoproteínas da Membrana de Plaquetas/metabolismo , Animais , Ativação Plaquetária , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Receptores de Trombina/metabolismo , Receptores Ativados por Proteinase/metabolismo
5.
J Biomech ; 130: 110801, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34768079

RESUMO

Platelet accumulation at the site of a vascular injury is regulated by soluble platelet agonists, which induce various types of platelet responses, including integrin activation and granule secretion. The interplay between local biochemical cues, mechanical interactions between platelets and macroscopic thrombus dynamics is poorly understood. Here we describe a novel computational model of microvascular clot formation for the detailed analysis of thrombus mechanics. We adopt a previously developed two-dimensional particle-based model focused on the thrombus shell formation and revise it to introduce the platelet agonists. Blood flow is simulated via a computational fluid dynamics approach. In order to model soluble platelet activators, we apply Langevin dynamics to a large number of non-dimensional virtual particles. Taking advantage of the available data on platelet dense granule secretion kinetics, we model platelet degranulation as a stochastic agonist-dependent process. The new model qualitatively reproduces the enhanced thrombus formation due to dense granule secretion, in line with in vivo findings, and provides a mechanism for the thrombin confinement at the early stages of clot formation. Our calculations also predict that the release of platelet dense granules results in the additional mechanical stabilization of the inner layers of thrombus. Distribution of the inter-platelet forces throughout the aggregate reveals multiple weak spots in the outer regions of a thrombus, which are expected to result in the mechanical disruptions at the later stages of clot formation.


Assuntos
Agregação Plaquetária , Trombose , Animais , Biofísica , Plaquetas , Modelos Animais de Doenças , Ativação Plaquetária
6.
Biophys J ; 100(1): 117-25, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21190663

RESUMO

We investigated the phenomenon of ultrasonic cleavage of DNA by analyzing a large set of cleavage patterns of DNA restriction fragments using polyacrylamide gel electrophoresis. The cleavage intensity of individual phosphodiester bonds was found to depend on the nucleotide sequence and the position of the bond with respect to the ends of the fragment. The relative intensities of cleavage of the central phosphodiester bond in 16 dinucleotides and 256 tetranucleotides were determined by multivariate statistical analysis. We observed a remarkable enhancement of the mean values of the relative intensities of cleavage (cleavage rates) in phosphodiester bonds following deoxycytidine, which diminished in the row of dinucleotides: d(CpG) > d(CpA) > d(CpT) >> d(CpC). The cleavage rates for all pairs of complementary dinucleotides were significantly different from each other. The effect of flanking nucleotides in tetranucleotides on cleavage rates of all 16 types of central dinucleotides was also statistically significant. The sequence-dependent ultrasonic cleavage rates of dinucleotides are consistent with reported data on the intensity of the conformational motion of their 5'-deoxyribose. As a measure of local conformational dynamics, cleavage rates may be useful for characterizing functional regions of the genome.


Assuntos
DNA/genética , DNA/metabolismo , Ultrassom/métodos , Sequência de Bases , DNA/química , Eletroforese em Gel de Poliacrilamida , Fenômenos Físicos , Maleabilidade , Soluções
7.
Sci Rep ; 4: 4532, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24681819

RESUMO

Next Generation Sequencing (NGS) technology is based on cutting DNA into small fragments, and their massive parallel sequencing. The multiple overlapping segments termed "reads" are assembled into a contiguous sequence. To reduce sequencing errors, every genome region should be sequenced several dozen times. This sequencing approach is based on the assumption that genomic DNA breaks are random and sequence-independent. However, previously we showed that for the sonicated restriction DNA fragments the rates of double-stranded breaks depend on the nucleotide sequence. In this work we analyzed genomic reads from NGS data and discovered that fragmentation methods based on the action of the hydrodynamic forces on DNA, produce similar bias. Consideration of this non-random DNA fragmentation may allow one to unravel what factors and to what extent influence the non-uniform coverage of various genomic regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA