Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0305089, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38923938

RESUMO

The volume of human carbon (δ13C) and nitrogen (δ15N) isotope data produced in archaeological research has increased markedly in recent years. However, knowledge of bone remodelling, its impact on isotope variation, and the temporal resolution of isotope data remains poorly understood. Varied remodelling rates mean different elements (e.g., femur and rib) produce different temporal signals but little research has examined intra-element variability. This study investigates human bone remodelling using osteon population density and the relationship with carbon and nitrogen isotope data at a high resolution, focusing on variation through femoral cross-sections, from periosteal to endosteal surfaces. Results demonstrate considerable differences in isotope values between cross-sectional segments of a single fragment, by up to 1.3‰ for carbon and 1.8‰ for nitrogen, illustrating the need for standardised sampling strategies. Remodelling also varies between bone sections, occurring predominantly within the endosteal portion, followed by the midcortical and periosteal. Therefore, the endosteal portion likely reflects a shorter period of life closer to the time of death, consistent with expectations. By contrast, the periosteal surface provides a longer average, though there were exceptions to this. Results revealed a weak negative correlation between osteon population density and δ15N or δ13C, confirming that remodelling has an effect on isotope values but is not the principal driver. However, a consistent elevation of δ15N and δ13C (0.5‰ average) was found between the endosteal and periosteal regions, which requires further investigation. These findings suggest that, with further research, there is potential for single bone fragments to reconstruct in-life dietary change and mobility, thus reducing destructive sampling.


Assuntos
Remodelação Óssea , Isótopos de Carbono , Fêmur , Isótopos de Nitrogênio , Humanos , Fêmur/anatomia & histologia , Fêmur/química , Fêmur/metabolismo , Remodelação Óssea/fisiologia , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Feminino , Masculino , Adulto , Pessoa de Meia-Idade
2.
R Soc Open Sci ; 8(5): 202106, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34035946

RESUMO

The great Tudor warship, the Mary Rose, which sank tragically in the Solent in 1545 AD, presents a rare archaeological opportunity to research individuals for whom the precise timing and nature of death are known. A long-standing question surrounds the composition of the Tudor navy and whether the crew were largely British or had more diverse origins. This study takes a multi-isotope approach, combining strontium (87Sr/86Sr), oxygen (δ18O), sulfur (δ34S), carbon (δ13C) and nitrogen (δ15N) isotope analysis of dental samples to reconstruct the childhood diet and origins of eight of the Mary Rose crew. Forensic ancestry estimation was also employed on a subsample. Provenancing isotope data tentatively suggests as many as three of the crew may have originated from warmer, more southerly climates than Britain. Five have isotope values indicative of childhoods spent in western Britain, one of which had cranial morphology suggestive of African ancestry. The general trend of relatively high δ15N and low δ13C values suggests a broadly comparable diet to contemporaneous British and European communities. This multi-isotope approach and the nature of the archaeological context has allowed the reconstruction of the biographies of eight Tudor individuals to a higher resolution than is usually possible.

3.
PLoS One ; 15(7): e0235005, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32628680

RESUMO

Archaeology has yet to capitalise on the opportunities offered by bioarchaeological approaches to examine the impact of the 11th-century AD Norman Conquest of England. This study utilises an integrated multiproxy analytical approach to identify and explain changes and continuities in diet and foodways between the 10th and 13th centuries in the city of Oxford, UK. The integration of organic residue analysis of ceramics, carbon (δ13C) and nitrogen (δ15N) isotope analysis of human and animal bones, incremental analysis of δ13C and δ15N from human tooth dentine and palaeopathological analysis of human skeletal remains has revealed a broad pattern of increasing intensification and marketisation across various areas of economic practice, with a much lesser and more short-term impact of the Conquest on everyday lifestyles than is suggested by documentary sources. Nonetheless, isotope data indicate short-term periods of instability, particularly food insecurity, did impact individuals. Evidence of preferences for certain foodstuffs and cooking techniques documented among the elite classes were also observed among lower-status townspeople, suggesting that Anglo-Norman fashions could be adopted across the social spectrum. This study demonstrates the potential for future archaeological research to generate more nuanced understanding of the cultural impact of the Norman Conquest of England, while showcasing a method which can be used to elucidate the undocumented, everyday implications of other large-scale political events on non-elites.


Assuntos
Restos Mortais/química , Culinária/história , Dieta/história , Classe Social/história , Animais , Arqueologia/métodos , Osso e Ossos/química , Isótopos de Carbono/análise , Bovinos , Cerâmica/análise , Feminino , Cabras , História Medieval , Humanos , Masculino , Isótopos de Nitrogênio/análise , Ovinos , Suínos , Dente/química , Reino Unido
5.
Sci Rep ; 9(1): 19792, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31874966

RESUMO

Navan Fort is an iconic prehistoric Irish ceremonial centre and the legendary capital of Ulster. The fort has produced an exceptional pig-dominated faunal assemblage that also contained a barbary macaque skull. Dating from the 4th to 1st century BC, it is likely to be a ceremonial feasting centre that may have drawn people and their animals from across Ulster and beyond. This study uses a multi-isotope (87Sr/86Sr, δ34S, δ13C, δ15N) approach to identify non-local animals and reconstruct site catchment. New biosphere mapping means that isotope data can be more confidently interpreted and the combination of strontium and sulphur analysis has the potential to estimate origins. In the absence of human remains, fauna provide the best proxy for human movement. Results for the 35 analysed animals are wide-ranging, especially in terms of strontium (0.707-0.715), which has the largest range for an Irish site. Sulphur values are more restricted (13.1‰-17.1‰) but are high in the context of British and Irish data. Results provide clear evidence for animals (and thus people) coming from across Ulster and beyond, demonstrating the site's wide catchment. Navan Fort was clearly a major ceremonial centre with far-reaching influence and hosted feasts that drew people and animals from afar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA