Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(22): 225701, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35714234

RESUMO

We perform large-scale quantum Monte Carlo simulations of SLAC fermions on a two-dimensional square lattice at half filling with a single Dirac cone with N=2 spinor components and repulsive on-site interactions. Despite the presence of a sign problem, we accurately identify the critical interaction strength U_{c}=7.28±0.02 in units of the hopping amplitude, for a continuous quantum phase transition between a paramagnetic Dirac semimetal and a ferromagnetic insulator. Using finite-size scaling, we extract the critical exponents for the corresponding N=2 chiral Ising Gross-Neveu universality class: the inverse correlation length exponent ν^{-1}=1.19±0.03, the order parameter anomalous dimension η_{ϕ}=0.31±0.01, and the fermion anomalous dimension η_{ψ}=0.136±0.005.

2.
Phys Rev Lett ; 127(21): 217003, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860094

RESUMO

We introduce the adiabatic quantum Monte Carlo (AQMC) method, where we gradually crank up the interaction strength, as an amelioration of the sign problem. It is motivated by the adiabatic theorem and will approach the true ground state if the evolution time is long enough. We demonstrate that the AQMC algorithm enhances the average sign exponentially such that low enough temperatures can be accessed and ground-state properties probed. It is a controlled approximation that satisfies the variational theorem and provides an upper bound for the ground-state energy. We first benchmark the AQMC algorithm vis-à-vis the undoped Hubbard model on the square lattice which is known to be sign-problem-free within the conventional quantum Monte Carlo formalism. Next, we test the AQMC algorithm against the density-matrix-renormalization-group approach for the doped four-leg ladder Hubbard model and demonstrate its remarkable accuracy. As a nontrivial example, we apply our method to the Hubbard model at p=1/8 doping for a 16×8 system and discuss its ground-state properties. We finally utilize our method and demonstrate the emergence of U(1)_{2}∼SU(2)_{1} topological order in a strongly correlated Chern insulator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA