Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(32): e2302151120, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523553

RESUMO

Polyelectrolyte complexation plays an important role in materials science and biology. The internal structure of the resultant polyelectrolyte complex (PEC) phase dictates properties such as physical state, response to external stimuli, and dynamics. Small-angle scattering experiments with X-rays and neutrons have revealed structural similarities between PECs and semidilute solutions of neutral polymers, where the total scattering function exhibits an Ornstein-Zernike form. In spite of consensus among different theoretical predictions, the existence of positional correlations between polyanion and polycation charges has not been confirmed experimentally. Here, we present small-angle neutron scattering profiles where the polycation scattering length density is matched to that of the solvent to extract positional correlations among anionic monomers. The polyanion scattering functions exhibit a peak at the inverse polymer screening radius of Coulomb interactions, q* ≈ 0.2 Å-1. This peak, attributed to Coulomb repulsions between the fragments of polyanions and their attractions to polycations, is even more pronounced in the calculated charge scattering function that quantifies positional correlations of all polymer charges within the PEC. Screening of electrostatic interactions by adding salt leads to the gradual disappearance of this correlation peak, and the scattering functions regain an Ornstein-Zernike form. Experimental scattering results are consistent with those calculated from the random phase approximation, a scaling analysis, and molecular simulations.

2.
Macromolecules ; 54(14): 6878-6890, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34334816

RESUMO

Polyelectrolyte complex coacervates of homologous (co)polyelectrolytes with a near-ideally random distribution of a charged and neutral ethylene oxide comonomer were synthesized. The unique platform provided by these building blocks enabled an investigation of the phase behavior across charge fractions 0.10 ≤ f ≤ 1.0. Experimental phase diagrams for f = 0.30-1.0 were obtained from thermogravimetric analysis of complex and supernatant phases and contrasted with molecular dynamics simulations and theoretical scaling laws. At intermediate to high f, a dependence of polymer weight fraction in the salt-free coacervate phase (w P,c) of w P,c ∼ f 0.37±0.01 was extracted; this trend was in good agreement with accompanying simulation predictions. Below f = 0.50, w P,c was found to decrease more dramatically, qualitatively in line with theory and simulations predicting an exponent of 2/3 at f ≤ 0.25. Preferential salt partitioning to either coacervate or supernatant was found to be dictated by the chemistry of the constituent (co)polyelectrolytes.

3.
ACS Macro Lett ; 3(11): 1156-1160, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-35610815

RESUMO

The cyclic esteracetal 2-methyl-1,3-dioxane-4-one (MDO) was polymerized in bulk using diethyl zinc as the catalyst and benzyl alcohol as the initiator to yield either the corresponding polyesteracetal (PMDO) or the aliphatic polyester poly(3-hydroxypropionic acid) (PHPA) at low and high catalyst concentrations, respectively. Spectral analysis gave evidence for distinct propagating species in the two catalyst concentration regimes. At low zinc concentrations ring opening by attack of the initiating species at the acetal functionality, yielding a zinc carboxylate, followed by propagation to yield pure PMDO was implicated. At high zinc concentrations we propose that ring opening via attack at the ester functionality produced a labile zinc hemiacetal, which rapidly and irreversibly expelled acetaldehyde to form a propagating zinc alkoxide and ultimately pure PHPA. Initial rate studies indicated that the rate of PHPA formation had a second-order dependence on zinc concentration; in contrast, the rate of PMDO formation was first order in zinc concentration. High molar mass PMDO exhibited only a glass transition temperature (Tg) ≈ -30 °C, whereas high molar mass PHPA had a Tg ≈ -30 °C and a melting temperature (Tm) ≈ 77 °C. When PHPA and PMDO were subjected to neutral or slightly acidic environments, PMDO exhibited expedited degradation as compared with PHPA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA