Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(25): 12954-12966, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38863239

RESUMO

In this study, we present an in situ solvothermal approach for synthesizing a highly efficient bifunctional CuBi2O4/Bi2O3 composite catalyst for applications in H2 production and the removal of organic pollutants. Various characterization techniques, including XRD, UV-vis DRS, SEM, TEM, and EIS, were used to characterize the prepared catalyst. Density functional theory calculations confirmed a Z-scheme mechanism, revealing the charge transfer mechanism from the Bi2O3 surface to the CuBi2O4 surface. The composite exhibited a photocurrent of 2.83 × 104 A/cm2 and a hydrogen production rate of 526 µmolg-1h-1 under natural sunlight. Moreover, the catalyst demonstrated efficient degradation of RhB up to 58% in 120 min under 50 W LED illumination. Additionally, multiple recycling tests confirmed its high stability and recyclability, making it a promising candidate for various applications in the field of photocatalysis.

2.
Langmuir ; 39(20): 7091-7108, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37163322

RESUMO

The efficient use of visible light is necessary to take advantage of photocatalytic processes in both indoor and outdoor circumstances. Precisely manipulating the in situ growth method of heterojunctions is an effective way to promote photogenerated charge separation. Herein, the SrFeO3@B-rGO catalyst was prepared by an in situ growth method. At a loading of 10 wt % B-rGO, the nanocomposites revealed an excellent morphology and thermal, optical, electrochemical, and mechanical properties. X-ray diffraction analysis revealed the cubic spinel structure and a space group of Pm̅3m for SrFeO3. High-resolution scanning electron microscopy and high-resolution transmission electron microscopy show the core-shell formation between SrFeO3 and B-rGO. Furthermore, density functional theory of SrFeO3 was performed to find its band structure and density of states. The SrFeO3@B-rGO nanocomposite shows the degradation rate of tetracycline (TC) reaching 92% in 75 min and the highest rate constant of 0.0211 min-1. To improve the catalytic removal rate of antibiotics, the efficiency of e- and h + separation must be improved, as well as the generation of additional radicals. Radical trapping tests and the electron paramagnetic resonance method indicated that the combination of Fe2+ and Fe3+ in SrFeO3 effectively separated e- and h+ while also promoting the development of the superoxide anion (•O2-) to accelerate TC degradation. The entire TC degradation pathway using high-performance liquid chromatography and its mechanism were discussed. As a whole, this study delineates that photocatalysis is a viable strategy for the treatment of environmental antibiotic wastewater.

3.
Environ Res ; 207: 112188, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624267

RESUMO

Visible light-driven carbon-doped TiO2 supported with metal nitrate hydroxide (CT-Ni/Co/Cu) nanocomposites were prepared and characterized by various studies. It is fascinating to note that particle size of TiO2 was substantially reduced from 5 µm to 50 nm after doping of carbon which was confirmed by FESEM. Moreover, the incorporation of stable metal (Cu) nitrate hydroxide further enhanced the visible light absorption up to 800 nm as evident by UV-DRS. The carbon doping and copper nitrate formation are validated by the Ti-O-C and N-O bonds using XPS and FTIR spectra. The photocatalytic activity of as-prepared photocatalyst was tested for the tetracycline degradation (TC, 10 mg/mL) under light irradiation. Significantly, 3 wt% carbon-doped TiO2 (31CT) with Cu (II) hydroxide nitrate nanocomposite photocatalyst exhibited an excellent photocatalytic activity (97%, within 1 h), and the corresponding reaction rate was around 2 times higher than bare TiO2. The excellent photocatalytic activity of 31CT-Cu nanocomposite was due to enhanced adsorbent of TC via carbon doping, visible light absorption, improved photo-generated carrier separation and migration by metal nitrate hydroxide as a support. This work may promote the development of a new carbon-doped TiO2 supported with highly stable metal nitrate hydroxide nanocomposite by facile method and used as an efficient photocatalyst for photodegradation of environmental pollutants.


Assuntos
Carbono , Nitratos , Carbono/química , Catálise , Hidróxidos , Luz , Tetraciclina , Titânio/química
4.
Small ; 16(12): e1902990, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31724829

RESUMO

Design and development of efficient photocatalysts for H2 production from water and sunlight have gained significant attention as the solar assisted approach is considered to be a promising approach for the generation of clean fuel. However, the poor charge carrier separation and light harvesting ability of existing photocatalysts limits the efficiency of photoconversion of water. In this work, the synthesis of transition metal ions (M2+ = Co2+ , Cu2+ , and Ni2+ ) coordinated with Ti-metal organic frameworks (Ti-MOFs) through a simple post-synthetic coordination method for efficient solar light-driven H2 production is reported. Notably, coordination of M2+ ions with Ti-MOF significantly improves the optical absorption by d-d transitions and the multimetal sites facilitate the fast charge carrier separation, thereby enhancing the solar light-driven H2 production activity. Very interestingly, the rate of solar light-driven H2 production is varied with respect to different metal ions coordination due to the position of d-d bands absorption in the solar spectrum, and the complexing tendency of M2+ ions with sacrificial electron donors. A maximum solar H2 production rate of 1583.55 µmol h-1 g-1 is achieved with a Cu2+ coordinated Ti-MOF, which is ≈13 fold higher than that of the pristine Ti-MOF.

5.
Phys Chem Chem Phys ; 18(7): 5179-91, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26806337

RESUMO

Extending the absorption to the visible region by tuning the optical band-gap of semiconductors and preventing charge carrier recombination are important parameters to achieve a higher efficiency in the field of photocatalysis. The inclusion of reduced graphene oxide (rGO) support in photocatalysts is one of the key strategies to address the above-mentioned issues. In this study, rGO supported AgI-mesoTiO2 photocatalysts were synthesized using a sonochemical approach. The physical effects of ultrasound not only improved the crystallinity of AgI-mesoTiO2 but also increased the surface area and loading of the AgI-mesoTiO2 nanocomposite on rGO sheets. The low intense oxygen functionalities (C-O-C and COOH groups) peak observed in the high resolution C1s spectrum of a hybrid AgI-mesoTiO2-rGO photocatalyst clearly confirmed the successful reduction of graphene oxide (GO) to rGO. The interfacial charge transfer between the rGO and the p-n junction of heterostructured photocatalysts has decreased the band-gap of the photocatalyst from 2.80 to 2.65 eV. Importantly, the integration of rGO into AgI-mesoTiO2 composites serves as a carrier separation centre and provides further insight into the electron transfer pathways of heterostructured nanocomposites. The individual effects of photo-generated electrons and holes over rGO on the photocatalytic degradation efficiency of rhodamine (RhB) and methyl orange (MO) using AgI-mesoTiO2-rGO photocatalysts were also studied. Our experimental results revealed that photo-generated superoxide (O2(-)˙) radicals are the main reactive species for the degradation of MO, whereas photo-generated holes (h(+)) are responsible for the degradation of RhB. As a result, 60% enhancement in MO degradation was observed in the presence of rGO in comparison to that of the pure AgI-mesoTiO2 photocatalyst. This is due to the good electron acceptor and the ultrafast electron transfer properties of rGO that can effectively reduce the molecular oxygen to produce a large amount of reactive O2(-)˙ radicals. However, in the case of RhB degradation, h(+) is the main reactive species which showed a slightly increased photocatalytic activity (12%) in the presence of rGO support where the role of rGO is almost negligible. This study suggests the effective roles of rGO for the degradation of organics, i.e., the rate of photocatalytic degradation also depends on the nature of compound rather than rGO support.

6.
Dalton Trans ; 53(17): 7596-7604, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38618661

RESUMO

In this study, a trimetallic catalyst, NiWRu@NF, is electrodeposited onto nickel foam using chronoamperometry to enhance the hydrogen evolution reaction (HER) in alkaline water electrolysis. The catalyst combines nickel, tungsten, and ruthenium components, strategically designed for efficiency and cost-effectiveness, hydroxyl transfer and water dissociation, and acceleration of hydrogen combination, respectively. Evaluation of NiWRu@NF reveals exceptional performance, with a low overpotential of -50 mV and high current density of -10 mA cm-2, signifying its efficiency in promoting HER. Tafel values further corroborate the catalyst's effectiveness, indicating a rapid reaction rate of hydrogen evolution in such a highly alkaline medium compared to other controls studied along with it. This study underscores the significance of NiWRu@NF in advancing alkaline HER kinetics, paving the way for more efficient electrolysis processes.

7.
Chemosphere ; 349: 140969, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114024

RESUMO

Employing an affordable and sustainable visible-light-driven system is crucial for organic pollutant abatement, in the field of photocatalysis. In the present investigation, a pioneering photocatalyst zinc indium sulphide, ZnIn2S4 (ZIS) supported on a silica gel matrix, SiO2 (SG) which is the leftover material after multiple rounds of dehumidification processes, was synthesized. The fabrication of the heterojunction facilitated enhancement in light absorption and charge separation efficiency. The photocatalytic performance was evaluated through the degradation of tetracycline (TC) under light irradiation. The nano-photocatalyst experienced detailed analysis using spectroscopic and microscopic methods. The ZIS/SG catalyst exhibited remarkable efficiency in degrading TC under visible light conditions, achieving a nearly 98-99% degradation. This performance surpassed the degradation rates of the original ZIS and SG catalysts by 3.6 and 4.45 times, respectively. Additionally, the catalyst was effectively used to control TC levels in real-time within pharmaceutical plant effluent, resulting in a degradation efficiency of 78.2%. With affordability, enhanced TC mineralization, and recyclability for up to six runs (efficiency ∼ 85%), the ZIS/SG photocatalyst exhibits desirable qualities of an ideal one. This innovative nano-photocatalyst introduces new possibilities for improving the process of photocatalytic decontamination of tenacious emerging pollutants by providing satisfactory reusability and stability.


Assuntos
Poluentes Ambientais , Compostos Heterocíclicos , Higroscópicos , Índio , Dióxido de Silício , Tetraciclina , Antibacterianos , Luz , Zinco , Catálise
8.
Chemosphere ; 352: 141473, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382721

RESUMO

A strategy to enhance the photocatalytic performance of metal-organic framework (MOF) based systems for the efficient elimination of Cr(VI) ions from polluted water under visible light irradiation has been developed by constructing MOF@MOF heterojunctions. Specifically, IRMOF-3 was grown in situ around NH2-MIL-101(Fe) based on interfacial Lewis acid-base interaction using 2-aminoterephthalic acid (ATA) as a linker, resulting in the formation of a MOF@MOF heterojunction, designated as IRMOF-3@NH2-MIL-101(Fe). In comparison to individual MOFs, the IRMOF-3@NH2-MIL-101(Fe) heterojunction exhibited a significantly higher photocatalytic reduction efficiency for Cr(VI), achieving a reduction of 95.98% within 120 min under visible-light irradiation. This performance surpasses that of individual MOFs and most reported photocatalysts. Additionally, the mechanism underlying Cr(VI) reduction by IRMOF-3@NH2-MIL-101(Fe) was comprehensively elucidated by analyzing optoelectronic properties, energy band structure, and structural results. It is worth noting that this study represents the first documented instance of photocatalytic Cr(VI) reduction utilizing IRMOF-3 and its interaction with NH2-MIL-101(Fe). The MOF@MOF photocatalyst, leveraging the synergistic effects of its various components, holds great promise for efficiently removing harmful pollutants from water and finds significant potential applications in environmental remediation.


Assuntos
Cromo , Estruturas Metalorgânicas , Compostos Organometálicos , Ácidos de Lewis , Bases de Lewis , Água
9.
Chemosphere ; 350: 141012, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145845

RESUMO

The increasing pollution of water bodies with organic contaminants, including antibiotics, has become a significant environmental concern. In this study, a noble-metal-free alternative, NiCo bimetal cocatalyst, was synthesized and applied to enhance the photocatalytic degradation of the antibiotic tetracycline (TC) using BiVO4 as the photocatalyst under the visible spectrum. The NiCo-BiVO4 nanocomposite exhibited improved visible light absorption, reduced recombination rate of charge carriers, and enhanced electrochemical properties. The photocatalytic degradation of TC was significantly enhanced by the NiCo bimetal modification, with the 2 wt% NiCo-BiVO4 nanocomposite achieving an 87.2% degradation of TC and 82% Total Organic Carbon (TOC) removal within 120 min. The degradation kinetics of TC (target compound) followed a first-order reaction, with photogenerated electrons and holes identified as the primary active species responsible for the degradation process. The recyclability of the catalyst was also demonstrated for multiple runs, indicating its stability. Furthermore, the pathway of TC degradation by 2 wt% NiCo-BiVO4 nanocomposite was proposed based on the detected intermediate products using LC-MS analysis. This study provides a promising approach for developing efficient, noble-metal-free photocatalysts to remove organic contaminants from water sources.


Assuntos
Nanocompostos , Água , Fotólise , Bismuto/química , Antibacterianos/química , Tetraciclina , Luz , Catálise
10.
Sci Total Environ ; 892: 164479, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37257622

RESUMO

Fluoroquinolones (FQs) are the class of Antibiotics (ABs) that have been extensively used worldwide for the treatment of diseases caused by bacterial infections. In India, most of these untreated ABs and their unused metabolites present in treated and untreated wastewater end up in agricultural land and water bodies. This can accelerate the problem of antimicrobial resistance in the community. Hence, we aim to develop a cost-effective sensor to detect and monitor the presence of such drugs in water bodies. We have prepared a chemically reduced graphene oxide (rGO) integrated luminescent cerium metal-organic framework (MOF) that specifically targets and recognizes ciprofloxacin (CPFX), norfloxacin (NFX), and ofloxacin (OFX) achieving excellent sensing activity. A remarkable quenching of the fluorescence of MOF composite was observed upon interaction with CPFX, NFX, and OFX with 57.9, 46.3, and 51.6 ppb as limits of detection, respectively, through a Forster resonance energy transfer from the Ce-MOF to the analytes. The applicability of the sensor was also examined with real-time samples collected from the rivers of Chennai city and the MOF probe exhibited an appreciable recovery of results. This is the first study on Ce-MOF-based rGO composite providing a solid rationale for fluorescence detection of FQs with exceptional quenching efficiency and very high sensitivity for monitoring FQs in water bodies even in diluted conditions.


Assuntos
Antibacterianos , Estruturas Metalorgânicas , Antibacterianos/análise , Água , Índia , Fluoroquinolonas , Norfloxacino , Ofloxacino , Ciprofloxacina , Transferência de Energia
11.
Environ Sci Pollut Res Int ; 30(4): 10179-10190, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36071357

RESUMO

Construction of the Z-scheme heterojunction photocatalyst achieved highly improved photocatalytic ability by its high redox ability of the photoinduced e--h+ pairs. In the study, Z-scheme g-C3N4/BiYWO6 heterojunction photocatalyst is prepared by the single-step hydrothermal method. Further, its photocatalytic ability was assessed by degrading methylene blue under visible light exposure. Particularly, the optimized 30 wt% of g-C3N4 in the g-C3N4/BiYWO6 composite exposes almost complete degradation after 90 min, that is ~ 3.0 times greater than the bare BiYWO6 and g-C3N4 with the rate constant value 0.032 min-1. Experimentally, the radical trapping studies indicate O2·- and ·OH radicals are playing a vital role in the photocatalytic degradation process. Also, the Z-scheme g-C3N4/BiYWO6 heterojunction photocatalyst exhibits excellent photoelectrochemical property and it is stable after 5 cycles, which indicates its good reusability nature. These enhancements are due to the newly formed heterostructure that facilitates the migration and separation efficiency of the photoproduced e--h+ pairs. Hence, the synthesized Z-scheme g-C3N4/BiYWO6 heterostructure could be an excellent material for wastewater remediation works.


Assuntos
Luz , Azul de Metileno , Águas Residuárias
12.
Environ Sci Pollut Res Int ; 30(30): 75401-75416, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37217818

RESUMO

The waste management of polyethylene terephthalate (PET)-derived polyester (PES) textile is a global issue, and material recovery through chemical recycling can restore a circular economy. In our investigation, microwave-induced catalytic aminolysis and glycolysis of PES textile wastes using Ag-doped ZnO nanoparticles have been proposed. Ag-doped ZnO is prepared by the sol-gel method and characterised by XRD, FT-IR, UV-Vis, SEM-EDX and TEM. The reaction parameters such as PET-to-catalyst ratio, microwave power and irradiation time, temperature and catalyst recycling have been optimised. The catalyst was found to be more stable and could be recycled up to six times without losing its activity. Both the aminolysis and glycolysis of PES showed 100% conversion and afforded of bis (2-hydroxy ethylene) terephthalamide (BHETA) and bis (2-hydroxy ethylene) terephthalate (BHET), respectively. The depolymerisation of PES wastes using Ag-doped ZnO afforded BHETA and BHET for about 95 and 90%, respectively. The monomers BHET and BHETA confirmed by FT-IR, 1H NMR and mass spectroscopy. According to the findings, 2 mol% Ag-doped ZnO has higher catalytic activity.


Assuntos
Nanopartículas , Óxido de Zinco , Óxido de Zinco/química , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Têxteis , Nanopartículas/química , Polietilenotereftalatos/química
13.
Chem Commun (Camb) ; 59(36): 5399-5402, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37060113

RESUMO

In this article, we present a sapiential method for producing highly effective oxygen-containing CN with hierarchical porous hollow nanotubes (HTCN) using thermal polycondensation of oxalic acid-assisted supramolecular aggregates. As a result of the synergistic effect of spatial charge separation and optical absorption ability, HTCN outperforms pristine CN nanosheets (NSCN) in photocatalytic hydrogen production. This research will provide a novel cognitive perspective and understanding for constructing contemporary hydrogen production photocatalysts.

14.
Ultrason Sonochem ; 100: 106624, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804558

RESUMO

Metal-organic frameworks (MOFs) are a significant class of porous, crystalline materials composed of metal ions (clusters) and organic ligands. The potential use of copper MOF (Cu-BTC) for the sonophotocatalytic degradation of Tetracycline (TC) antibiotic was investigated in this study. To enhance its catalytic efficiency, S-scheme heterojunction was created by combining Cu-BTC with Zinc tungstate (ZnWO4), employing an ultrasound-assisted hydrothermal method. The results demonstrated that the Cu-BTC/ZnWO4 heterojunction exhibited complete removal of TC within 60 min under simultaneous irradiation of visible light and ultrasound. Interestingly, the sonophotocatalytic degradation of TC using the Cu-BTC/ZnWO4 heterojunction showed superior efficiency (with a synergy index of ∼0.70) compared to individual sonocatalytic and photocatalytic degradation processes using the same heterojunction. This enhancement in sonophotocatalytic activity can be attributed to the formation of an S-scheme heterojunction between Cu-BTC and ZnWO4. Within this heterojunction, electrons migrated from Cu-BTC to ZnWO4, facilitated by the interface between the two materials. Under visible light irradiation, the built-in electric field, band edge bending, and coulomb interaction synergistically inhibited the recombination of electron-hole pairs. Consequently, the accumulated electrons in Cu-BTC and holes in ZnWO4 actively participated in the redox reactions, generating free radicals that effectively attacked the TC molecules. This study offers valuable perspectives on the application of a newly developed S-scheme heterojunction photocatalyst, demonstrating its effectiveness in efficiently eliminating diverse recalcitrant pollutants via sonophotocatalytic degradation.

15.
Environ Sci Pollut Res Int ; 30(14): 41095-41106, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36630043

RESUMO

Photocatalysis is one of the fascinating fields for the wastewater treatment. In this regard, the present study deals with an effective visible light active BiYO3/g-C3N4 heterojunction nanocomposite photocatalyst with various ratios of BiYO3 and g-C3N4 (1:3, 1:1 and 3:1), synthesised by a wet chemical approach. The as-synthesised nanocomposite photocatalysts were investigated via different physicochemical approaches like Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electrons microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and photoelectrochemical studies to characterise the crystal structure, morphology, optical absorption characteristics and photoelectrochemical properties. The photocatalytic degradation ability of the prepared photocatalytic samples was also analysed through the degradation of RhB in the presence of visible light irradiation. Of all the synthesised photocatalysts, the optimised CB-1 composite showed a significant photocatalytic efficiency (88.7%), with excellent stability and recyclability after three cycles. O2•- and •OH radicals were found to act a major role in the RhB degradation using optimised CB-1 composite, and it possessed ~ 1 times greater photocurrent intensity than the pristine g-C3N4 and BiYO3. In the present work, a direct Z-scheme heterojunction BiYO3/g-C3N4 with a considerably improved photocatalytic performance is reported.


Assuntos
Luz , Espectroscopia de Infravermelho com Transformada de Fourier , Catálise , Microscopia Eletrônica de Transmissão , Microscopia Eletrônica de Varredura
16.
Chemosphere ; 313: 137552, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36526136

RESUMO

A novel FeMoO4/g-C3N4-2D/2D Z-scheme heterojunction photocatalyst was prepared via wet chemical method. The observed structural morphology of FeMoO4/g-C3N4 reveals the 2D-iron molybdate (FeMoO4) nanoplates compiled with the 2D-graphitic carbon nitride (g-C3N4) nanosheets like structure. The photocatalytic activity of the g-C3N4, FeMoO4, and FeMoO4/g-C3N4 composites were studied via the degradation of Rhodamine B (RhB) as targeted textile dye under visible light irradiation (VLI). The optimal FeMoO4/g-C3N4 (1:3 ratio of g-C3N4 and FeMoO4) composite show an enhanced degradation performance with rate constant value of 0.02226 min-1 and good stability even after three cycles. Thus, the h+ and O2•-are the key radicals in the degradation of RhB under VLI. It is proposed that the FeMoO4/g-C3N4 Z-scheme heterojunction effectively enhances the transfer and separation ability of e-/h+ pairs, by the way increasing the photocatalytic efficiency towards the RhB degradation. Thus, the newly constructed Z-scheme FeMoO4/g-C3N4 heterojunction photocatalyst is a promising material for the remediation of wastewater relevant to elimination of toxic effect in marine environment.


Assuntos
Ferro , Águas Residuárias , Luz , Têxteis
17.
Chemosphere ; 303(Pt 2): 135070, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35643163

RESUMO

Pharmaceutical compounds in water bodies pose hazards to the ecosystem because of their biotoxicity potency. To eradicate such pharmaceutical compounds, a novel g-CN/BiOBr/Fe3O4 nanocomposites was prepared using a simplistic route and appraised for photodegradation of model tetracycline antibiotics. The g-CN/BiOBr/Fe3O4 nanocomposites exhibited complete tetracycline degradation in just 60 min exposure of simulated light irradiation, which is 6 times higher than the g-CN. Under the analogous condition, the tetracycline mineralization ability of the g-CN/BiOBr/Fe3O4 nanocomposites was evaluated to be 78% of total organic carbon removal. The superior photocatalytic performance is ascribed to the extended visible light harvesting ability and enhanced charge carrier separation/transfer with impeded recombination rate in light of effective indirect Z-scheme heterojunction construction. Based on band-edge potential and radical trapping studies indicate that h+ > â€¢O2- > â€¢OH are the active species responsible for photodegradation. Furthermore, the ternary nanocomposites are magnetically retrievable and recyclable while retaining their stable photocatalytic performance. This work endows a new perspective on the rational design and construction of magnetically recoverable ternary nanocomposite for environmental remediation.


Assuntos
Ecossistema , Nanocompostos , Antibacterianos , Bismuto , Catálise , Preparações Farmacêuticas , Tetraciclina
18.
Chemosphere ; 287(Pt 4): 132379, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34597637

RESUMO

Tuning a graphitic carbon nitride (CN) structure is an effective strategy to advance its physicochemical and electronic properties. Herein, hierarchical CN nanorods with carbon vacancy were synthesized via ultrasound-assisted thermal polycondensation method wherein melamine-HONH2·HCl complex acts as a template. The hierarchical CN nanorods can facilitate multiple light scattering, provide large specific surface area with extensive reactive sites and endow abundant mass-transport channels for charge migration. The existence of carbon vacancies can serve as shallow charge trapping sites and prompt charge separation. Consequently, hierarchical CN nanorod possessed excellent sonophotodegradation efficiency of ∼100% towards Tetracycline (TC) antibiotic within 60 min under ultrasonic irradiation and visible light illumination. Moreover, the sonophotocatalytic degradation was higher than the sum of sonocatalytic and photocatalytic TC degradation using hierarchical CN nanorods due to its synergistic performance. A plausible sonophotocatalytic mechanism and TC degradation pathway using hierarchical CN nanorod were proposed. Lastly, hierarchical CN nanorod is durable and stable which can withstand the sonophotocatalytic condition even after the fifth run. This work offers an insight into hierarchical CN nanorod to advance sonophotocatalytic degradation performance for highly efficient removal of various recalcitrant pollutants.


Assuntos
Carbono , Nanotubos , Antibacterianos , Catálise , Grafite , Compostos de Nitrogênio , Tetraciclina
19.
Chemosphere ; 287(Pt 4): 132380, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34600002

RESUMO

Pharmaceutically active compounds are an emerging water contaminant that resists conventional wastewater treatments. Herein, the sonophotocatalytic degradation of Tetracycline (TC) antibiotics as a model contaminant was carried out over a rod-like g-C3N4/V2O5 (RCN-VO) nanocomposite. RCN-VO nanocomposite was synthesized via ultrasound-assisted thermal polycondensation method. The results showed that the RCN-VO nanocomposite could completely remove the TC in water within 60 min under simultaneous irradiation of visible light and ultrasound. Moreover, the sonophotocatalytic TC degradation (a synergy index of ∼1.5) was superior to the sum of individual sonocatalytic and photocatalytic degradation using RCN-VO nanocomposite. Besides, the enhanced sonophotocatalytic activity of RCN-VO can be attributed to the 1D/2D nanostructure and the S-scheme heterojunction formation between RCN and VO where the electrons migrated from RCN to VO across the RCN-VO interface. Under irradiation, the built-in electric field, band edge bending and Coulomb interaction can synergistically facilitate the unavailing electron-hole pair recombination. Thereby, the cumulative electron in RCN and holes in VO can actively take part in the redox reaction which generates free radicals and attack the TC molecules. This study provides insight into a novel S-Scheme heterojunction photocatalyst for the removal of various refractory contaminants via sonophotocatalytic degradation.


Assuntos
Antibacterianos , Nanocompostos , Catálise , Luz , Tetraciclina , Tetraciclinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA