Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Oral Dis ; 29(3): 968-977, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34905288

RESUMO

OBJECTIVES: Lymphomas represent around 10% of head and neck neoplasms, among which the diffuse large B-cell lymphoma (DLBCL) is the most common histologic subtype. In the present study, we characterized demographic parameters, anatomical sites, and survival rates of patients in a Brazilian cancer center. MATERIALS AND METHODS: Single-center retrospective epidemiological study of 243 head and neck DLBCL patients. Demographic characteristics, tumor localization, HIV status, lactate dehydrogenase (LDH) activity, and treatment modality were obtained from electronic medical records. RESULTS: The most common primary head and neck tumor location in patients with DLBCL was Waldeyer's ring. Interestingly, age above 80 years, male gender, high LDH levels, and HIV positivity were significantly associated with shorter overall survival (OS) rates and increased risk of death. We further demonstrated that treatment had a protective effect, improving OS, and reducing risk of death. Notably, we found no benefit of combination of chemotherapy and radiotherapy versus isolated treatment modalities. CONCLUSION: The study showed that primary head and neck DLBCL is more incident in middle age and elderly patients with a small male patients' majority in a Brazilian population. Moreover, we observed a 3-year OS rate of almost 60% and multivariate analysis showed that treatment was the only protective factor.


Assuntos
Soropositividade para HIV , Neoplasias de Cabeça e Pescoço , Linfoma Difuso de Grandes Células B , Pessoa de Meia-Idade , Humanos , Masculino , Idoso , Idoso de 80 Anos ou mais , Prognóstico , Estudos Retrospectivos , Brasil/epidemiologia , Linfoma Difuso de Grandes Células B/terapia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/epidemiologia , Neoplasias de Cabeça e Pescoço/terapia
2.
Exp Parasitol ; 216: 107932, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32535113

RESUMO

Neglected tropical diseases, such as Chagas disease caused by the protozoa Trypanosoma cruzi, affect millions of people worldwide but lack effective treatments that are accessible to the entire population, especially patients with the debilitating chronic phase. The recognition of host cells, invasion and its intracellular replicative success are essential stages for progression of the parasite life cycle and the development of Chagas disease. It is predicted that programmed cell death pathways (apoptosis) would be activated in infected cells, either via autocrine secretion or mediated by cytotoxic immune cells. This process should play a key role in resolving infections by hindering the evolutionary success of the parasite. In this research, we performed assays to investigate the role of the lectin galectin-3 (Gal3) in parasite-host signaling pathways. Using cells with endogenous levels of Gal3 compared to Gal3-deficient cells (induced by RNA interference), we demonstrated that T. cruzi mediated the survival pathways and the subverted apoptosis through Gal3 promoting a pro-survival state in infected cells. Infected Gal3-depleted cells showed increased activation of caspase 3 and pro-apoptotic targets, such as poly (ADP-ribose) polymerase (PARP), and lower accumulation of anti-apoptotic proteins, such as c-IAP1, survivin and XIAP. During the early stages of infection, Gal3 translocates from the cytoplasm to the nucleus and must act in survival pathways. In a murine model of experimental infection, Gal3 knockout macrophages showed lower infectivity and viability. In vivo infection revealed a lower parasitemia and longer survival and an increased spleen cellularity in Gal3 knockout mice with consequences on the percentage of T lymphocytes (CD4+ CD11b+) and macrophages. In addition, cytokines such as IL-2, IL-4, IL-6 and TNF-α are increased in Gal3 knockout mice when compared to wild type genotype. These data demonstrate a Gal3-mediated complex interplay in the host cell, keeping infected cells alive long enough for infection and intracellular proliferation of new parasites. However, a continuous knowledge of these signaling pathways should contribute to a better understanding the mechanisms of cell death subversion that are promoted by protozoans in the pathophysiology of neglected diseases such as Chagas disease.


Assuntos
Apoptose/fisiologia , Doença de Chagas/parasitologia , Galectina 3/fisiologia , Trypanosoma cruzi/fisiologia , Análise de Variância , Animais , Western Blotting , Caspase 3/análise , Sobrevivência Celular , Doença de Chagas/mortalidade , Chlorocebus aethiops , Colorimetria , Citocinas/sangue , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Galectina 3/análise , Galectina 3/genética , Células HeLa , Humanos , Imunofenotipagem , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Parasitemia/mortalidade , Parasitemia/parasitologia , Fenótipo , Baço/patologia , Células Vero
3.
Pediatr Blood Cancer ; 66(4): e27570, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30511400

RESUMO

Chronic myeloid leukemia (CML) is a rare disease in children. Different from that in adults, childhood CML involves transformative events occurring over a short time period. CML transformation to lymphoid blast phase (BP) is associated with copy number abnormalities, characteristic of BCR-ABL1 positive acute lymphoblastic leukemia, but not of CML in the chronic phase. Here, we present an unusual case of CML progressing to BP in a 1.6-year-old child, harboring IKZF1, PAX5, CDKN2A, and ETV6 deletions at diagnosis. It remains to be addressed whether distinct mechanisms might account for CML pathogenesis in early childhood.


Assuntos
Crise Blástica/genética , Deleção de Genes , Fator de Transcrição Ikaros/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Proteínas de Neoplasias/genética , Crise Blástica/patologia , Feminino , Humanos , Lactente , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia
4.
Int J Mol Sci ; 20(20)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614718

RESUMO

Drug resistance represents a major issue in treating breast cancer, despite the identification of novel therapeutic strategies, biomarkers, and subgroups. We have previously identified the LQB-223, 11a-N-Tosyl-5-deoxi-pterocarpan, as a promising compound in sensitizing doxorubicin-resistant breast cancer cells, with little toxicity to non-neoplastic cells. Here, we investigated the mechanisms underlying LQB-223 antitumor effects in 2D and 3D models of breast cancer. MCF-7 and MDA-MB-231 cells had migration and motility profile assessed by wound-healing and phagokinetic track motility assays, respectively. Cytotoxicity in 3D conformation was evaluated by measuring spheroid size and performing acid phosphatase and gelatin migration assays. Protein expression was analyzed by immunoblotting. Our results show that LQB-223, but not doxorubicin treatment, suppressed the migratory and motility capacity of breast cancer cells. In 3D conformation, LQB-223 remarkably decreased cell viability, as well as reduced 3D culture size and migration. Mechanistically, LQB-223-mediated anticancer effects involved decreased proteins levels of XIAP, c-IAP1, and Mcl-1 chemoresistance-related proteins, but not survivin. Survivin knockdown partially potentiated LQB-223-induced cytotoxicity. Additionally, cell treatment with LQB-223 resulted in changes in the mRNA levels of epithelial-mesenchymal transition markers, suggesting that it might modulate cell plasticity. Our data demonstrate that LQB-223 impairs 3D culture growth and migration in 2D and 3D models of breast cancer exhibiting different phenotypes.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Pterocarpanos/farmacologia , Antineoplásicos/toxicidade , Movimento Celular , Proliferação de Células , Feminino , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Células MCF-7 , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Pterocarpanos/toxicidade , Esferoides Celulares/efeitos dos fármacos , Survivina/genética , Survivina/metabolismo , Células Tumorais Cultivadas , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
5.
Semin Cancer Biol ; 29: 32-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25068996

RESUMO

Forkhead Box M1 (FOXM1) is a bona fide oncofoetal transcription factor, which orchestrates complex temporal and spatial gene expression throughout embryonic and foetal development as well as during adult tissue homeostasis and repair. Controlled FOXM1 expression and activity provides a balanced transcriptional programme to ensure proper growth and maturation during embryogenesis and foetal development as well as to manage appropriate homeostasis and repair of adult tissues. Conversely, deregulated FOXM1 upregulation likely affects cell migration, invasion, angiogenesis, stem cell renewal, DNA damage repair and cellular senescence, which impact tumour initiation, progression, metastasis, angiogenesis and drug resistance. A thorough understanding of the regulation and role of FOXM1 in health and in cancer should contribute to the development of better diagnostics and treatments for cancer as well as congenital disorders and other developmental diseases.


Assuntos
Antígenos de Neoplasias/genética , Fatores de Transcrição Forkhead/genética , Neoplasias/genética , Antígenos de Neoplasias/biossíntese , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Senescência Celular/genética , Reparo do DNA/genética , Transição Epitelial-Mesenquimal/genética , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Neoplásicas , Neovascularização Patológica/genética , Ativação Transcricional
6.
Biochim Biophys Acta ; 1839(11): 1316-22, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25287128

RESUMO

FOXM1 is a transcription factor required for a wide spectrum of essential biological functions, including DNA damage repair, cell proliferation, cell cycle progression, cell renewal, cell differentiation and tissue homeostasis. Recent evidence suggests that FOXM1 also has a role in many aspects of the DNA damage response. Accordingly, FOXM1 drives the transcription of genes for DNA damage sensors, mediators, signal transducers and effectors. As a result of these functions, it plays an integral part in maintaining the integrity of the genome and so is key to the propagation of accurate genetic information to the next generation. Preserving the genetic code is a vital means of suppressing cancer and other genetic diseases. Conversely, FOXM1 is also a potent oncogenic factor that is essential for cancer initiation, progression and drug resistance. An enhanced FOXM1 DNA damage repair gene expression network can confer resistance to genotoxic agents. Developing a thorough understanding of the regulation and function of FOXM1 in DNA damage response will improve the diagnosis and treatment of diseases including cancer, neurodegenerative conditions and immunodeficiency disorders. It will also benefit cancer patients with acquired genotoxic agent resistance.


Assuntos
Antineoplásicos/farmacologia , Dano ao DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fatores de Transcrição Forkhead/fisiologia , Animais , Proteína Forkhead Box M1 , Regulação Neoplásica da Expressão Gênica , Humanos
7.
Biomed Rep ; 20(3): 48, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38357238

RESUMO

The chemistry of pure cerium oxide (CeO2-x) nanoparticles has been widely studied since the 1970s, especially for chemical catalysis. CeO2-x nanoparticles have been included in an important class of industrial metal oxide nanoparticles and have been attributed a range of wide applications, such as ultraviolet absorbers, gas sensors, polishing agents, cosmetics, consumer products, high-tech devices and fuel cell conductors. Despite these early applications in the field of chemistry, the biological effects of CeO2-x nanoparticles were only explored in the 2000s. Since then, CeO2-x nanoparticles have gained a spot in research related to various diseases, especially the ones in which oxidative stress plays a part. Due to an innate oxidation state variation on their surface, CeO2-x nanoparticles have exhibited redox activities in diseases, such as cancer, acting either as an oxidizing agent, or as an antioxidant. In biological models, CeO2-x nanoparticles have been shown to modulate cancer cell viability and, more recently, cell death pathways. However, a deeper understanding on how the chemical structure of CeO2-x nanoparticles (including nanoparticle size, shape, suspension, agglomeration in the medium used, pH of the medium, type of synthesis and crystallite size) influences the cellular effects observed remains to be elucidated. In the present review, the chemistry of CeO2-x nanoparticles and their impact on biological models and modulation of cell signalling, particularly focusing on oxidative and cell death pathways, were investigated. The deeper understanding of the chemical activity of CeO2-x nanoparticles may provide the rationale for further biomedical applications towards disease treatment and drug delivery purposes.

8.
Anal Biochem ; 415(2): 203-5, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21596015

RESUMO

Cell death by apoptosis triggers the engagement of a conserved intracellular machinery of execution, involving mainly the activation of the caspase family of cysteine proteases. Caspase-3 is a common effector of most of the apoptotic pathways and is able to cleave several target proteins whose degradation will contribute to the execution phase of the cell demise program. Here we present a modification of the Western blot protocol to improve sensitivity of caspase-3 detection, providing a valuable tool to access its activation in biological specimens.


Assuntos
Western Blotting/métodos , Caspase 3/análise , Glutaral/química , Anticorpos/imunologia , Antineoplásicos/farmacologia , Caspase 3/imunologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Humanos , Imunoensaio/métodos , Proteínas Recombinantes/análise , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo
9.
Oncol Rep ; 45(2): 652-664, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33416171

RESUMO

Osteopontin (OPN) is upregulated in several types of tumor and has been associated with chemoresistance. However, the contribution of OPN splicing isoforms (OPN­SIs) to chemoresistance requires further investigation. The present study aimed to evaluate the expression patterns of each tested OPN­SI in cisplatin (CDDP)­resistant ovarian carcinoma cell lines, focusing on the role of the OPN­c isoform (OPNc) in drug resistance. ACRP ovarian cancer cells resistant to CDDP, as well as their parental cell line A2780, were used. Analyses of the transcriptional expression of OPN­SIs, epithelial­mesenchymal transition (EMT) markers and EMT­related cytokines were performed using reverse transcription­quantitative PCR. OPNc was silenced in ACRP cells using anti­OPNc DNA oligomers and stably overexpressed by transfecting A2780 cells with a mammalian expression vector containing the full length OPNc cDNA. Functional assays were performed to determine cell proliferation, viability and colony formation. The results demonstrated that among the three tested OPN­SIs, OPNc was the most upregulated transcript in the ACRP cells compared with the parental A2780 cells. In addition, the expression levels of P­glycoprotein multidrug transporter were upregulated in CDDP­resistant ACRP cells compared with those in A2780 cells. OPNc knockdown sensitized ACRP cells to CDDP treatment and downregulated P­gp expression levels compared with those in the negative control group. Additionally, silencing of OPNc impaired cell proliferative and colony formation abilities, as well as reversed the expression levels of EMT markers and EMT­related cytokines compared with those in the negative control cells. Notably, although stable OPNc overexpression resulted in increased A2780 cell proliferation, it notably increased CDDP sensitivity compared with that in the cells transfected with a control vector. These results suggested that OPNc silencing may represent a putative approach to sensitize resistant ovarian cancer cells to chemotherapeutic agents.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Osteopontina/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Processamento Alternativo , Linhagem Celular Tumoral , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cisplatino/uso terapêutico , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Osteopontina/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
10.
Int J Oncol ; 58(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33786613

RESUMO

Acute myeloid leukemia (AML) is a complex hematological disorder characterized by blockage of differentiation and high proliferation rates of myeloid progenitors. Anthracycline and cytarabine­based therapy has remained the standard treatment for AML over the last four decades. Although this treatment strategy has increased survival rates, patients often develop resistance to these drugs. Despite efforts to understand the mechanisms underlying cytarabine resistance, there have been few advances in the field. The present study developed an in vitro AML cell line model resistant to cytarabine (HL­60R), and identified chromosomal aberrations by karyotype evaluation and potential molecular mechanisms underlying chemoresistance. Cytarabine decreased cell viability, as determined by MTT assay, and induced cell death and cell cycle arrest in the parental HL­60 cell line, as revealed by Annexin V/propidium iodide (PI) staining and PI DNA incorporation, respectively, whereas no change was observed in the HL­60R cell line. In addition, the HL­60R cell line exhibited a higher tumorigenic capacity in vivo compared with the parental cell line. Notably, no reduction in tumor volume was detected in mice treated with cytarabine and inoculated with HL­60R cells. In addition, western blotting revealed that the protein expression levels of Bcl­2, X­linked inhibitor of apoptosis protein (XIAP) and c­Myc were upregulated in HL­60R cells compared with those in HL­60 cells, along with predominant nuclear localization of the p50 and p65 subunits of NF­κB in HL­60R cells. Furthermore, the antitumor effect of LQB­118 pterocarpanquinone was investigated; this compound induced apoptosis, a reduction in cell viability and a decrease in XIAP expression in cytarabine­resistant cells. Taken together, these data indicated that acquired cytarabine resistance in AML was a multifactorial process, involving chromosomal aberrations, and differential expression of apoptosis and cell proliferation signaling pathways. Furthermore, LQB­118 could be a potential alternative therapeutic approach to treat cytarabine­resistant leukemia cells.


Assuntos
Aberrações Cromossômicas , Leucemia Mieloide Aguda/tratamento farmacológico , Naftoquinonas/farmacologia , Pterocarpanos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Citarabina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Naftoquinonas/uso terapêutico , Pterocarpanos/uso terapêutico , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Biochim Biophys Acta Mol Cell Res ; 1867(10): 118761, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32485270

RESUMO

Evasion from apoptosis is one of the hallmarks of cancer. X-linked inhibitor of apoptosis protein (XIAP) is known to modulate apoptosis by inhibiting caspases and ubiquitinating target proteins. XIAP is mainly found at the cytoplasm, but recent data link nuclear XIAP to poor prognosis in breast cancer. Here, we generated a mutant form of XIAP with a nuclear localization signal (XIAPNLS-C-term) and investigated the oncogenic mechanisms associated with nuclear XIAP in breast cancer. Our results show that cells overexpressing XIAPΔRING (RING deletion) and XIAPNLS-C-term exhibited XIAP nuclear localization more abundantly than XIAPwild-type. Remarkably, overexpression of XIAPNLS-C-term, but not XIAPΔRING, conferred resistance to doxorubicin and increased cellular proliferative capacity. Interestingly, Survivin and c-IAP1 expression were not associated with XIAP oncogenic effects. However, NFκB expression and ubiquitination of K63, but not K48 chains, were increased following XIAPNLS-C-term overexpression, pointing to nuclear signaling transduction. Consistently, multivariate analysis revealed nuclear, but not cytoplasmic XIAP, as an independent prognostic factor in hormone receptor-negative breast cancer patients. Altogether, our findings suggest that nuclear XIAP confers poor outcome and RING-associated breast cancer growth and chemoresistance.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Núcleo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Lisina/metabolismo , Análise Multivariada , Proteínas Mutantes/metabolismo , Mutação/genética , NF-kappa B/metabolismo , Poliubiquitina/metabolismo , Prognóstico , Domínios Proteicos , Receptores de Superfície Celular/metabolismo , Análise de Sobrevida , Ubiquitinação/efeitos dos fármacos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/química
12.
Int J Oncol ; 54(2): 420-430, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30535434

RESUMO

Osteopontin (OPN) is a matricellular phosphoglycoprotein overexpressed in several tumor types and can activate several aspects of cancer progression in solid and non­solid tumors. In the present review, the roles of OPN in mediating resistance to chemotherapy and radiotherapy and their main associated signaling pathways were summarized and discussed. Furthermore, it was detailed how OPN expression may be able to modulate resistance to these therapies by controlling epithelial cell plasticity, stemness potential and cell survival. Based on these data, the use of OPN and associated signaling was then proposed as potential molecular targets in order to sensitize resistant cells to main current therapeutic approaches. Finally, based on experimental evidence obtained by our group, the importance of investigating the specific roles OPN splicing isoforms have and how their properties may specifically control resistance to therapy was highlighted. These data elucidate a better understanding of how total OPN and their splicing isoforms, as well as their associated signaling, may contribute to main aspects of chemoresistance and radioresistance, such as those controlling cell survival, apoptosis, autophagy, stemness, epithelial cell plasticity and associated cell receptors.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Osteopontina/genética , Isoformas de Proteínas/genética , Apoptose/genética , Autofagia/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias/genética , Splicing de RNA/genética , Tolerância a Radiação/genética , Transdução de Sinais
13.
Cancers (Basel) ; 11(3)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897782

RESUMO

Forkhead box (FOX) transcription factors compose a large family of regulators of key biological processes within a cell. FOXK2 is a member of FOX family, whose biological functions remain relatively unexplored, despite its description in the early nineties. More recently, growing evidence has been pointing towards a role of FOXK2 in cancer, which is likely to be context-dependent and tumour-specific. Here, we provide an overview of important aspects concerning the mechanisms of regulation of FOXK2 expression and function, as well as its complex interactions at the chromatin level, which orchestrate how it differentially regulates the expression of gene targets in pathophysiology. Particularly, we explore the emerging functions of FOXK2 as a regulator of a broad range of cancer features, such as cell proliferation and survival, DNA damage, metabolism, migration, invasion and metastasis. Finally, we discuss the prognostic value of assessing FOXK2 expression in cancer patients and how it can be potentially targeted for future anticancer interventions.

14.
Int J Oncol ; 55(6): 1396, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31545420

RESUMO

Subsequent to the publication of the above article, the authors have realized that there were errors associated with Figs. 1c and 2b. In Fig. 1c, the authors noted that the same data were incorrectly presented for the 'Untreated cells" and 'DMSO' dot­blot experiments. After having re­examined their source data, the authors were able to confirm that the data correctly shown for the 'Untreated cells' experiment had inadvertently been included in the Figure as the data for the 'DMSO' experiment. Additionally, in Fig. 2b, the authors noticed that the percentage of untreated cells with active caspase­3 was missing (the label for the 'No antibody' experiment). Corrected versions of Figs. 1 (including the correct data for the 'DMSO' dot blot) and 2 (with the label now incorporated) are shown opposite. Note that these changes do not affect the results or the conclusions reported in this paper, and all the authors agree to this correction. The authors apologize to the Editor and to the readership of the Journal for any inconvenience caused. [the original article was published in International Journal of Oncology 45: 1949­1958, 2014; DOI: 10.3892/ijo.2014.2615].

15.
Oncogenesis ; 7(3): 29, 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29540677

RESUMO

The forkhead transcription factor FOXK2 plays a critical role in suppressing tumorigenesis and mediating cytotoxic drug action in breast cancer. However, the mechanism by which the biological function of FOXK2 is regulated remains poorly understood. Here, we investigated the role of SUMOylation in modulating FOXK2-mediated drug sensitivity. We identified SUMOylation consensus motifs within the FOXK2 sequence and constructed two SUMOylation-defective double mutants by converting lysine 527 and 633 to arginines and glutamic acid 529 and 635 to alanines, respectively. We found that both the FOXK2 SUMOylation-deficient (K527/633 R) and (E529/635 A) mutants were ineffective in mediating the cytotoxic function of paclitaxel when compared to the wild-type (WT) FOXK2. When overexpressed, unlike the wild-type (WT) FOXK2, the K527/633 R mutant had little effect on the sensitivity of MCF-7 and MDA-MB-231 cells to paclitaxel, as examined by cell viability and clonogenic assays. Our results also showed that MCF-7 cells overexpressing the K527/633 R mutant form of FOXK2 or the empty expression vector have lower protein and mRNA levels of its tumour suppressive transcriptional target FOXO3 compared to the wild-type FOXK2. Consistently, ChIP assays revealed that unlike wild-type FOXK2, the SUMOylation-defective (K527/633 R) mutant is unable to bind to the FOXO3 promoter, despite expressing comparable levels of protein and having the same subcellular localization as the wild-type FOXK2 in MCF-7 cells. Interestingly, expression of neither the wild-type nor the K527/633 R mutant FOXK2 had any effect on the proliferation and paclitaxel sensitivity of the MCF-7 TaxR paclitaxel-resistant cells. In agreement, both the wild-type and the (K527/633 R) mutant FOXK2 failed to bind to the endogenous FOXO3 promoter in these cells. Collectively, our results suggest that SUMOylation positively regulates FOXK2 transcriptional activity and has a role in mediating the cytotoxic response to paclitaxel through the tumour suppressor FOXO3.

16.
Curr Drug Targets ; 17(2): 164-77, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25418858

RESUMO

FOXO3a and FOXM1 are two forkhead transcription factors with antagonistic roles in cancer and DNA damage response. FOXO3a functions like a typical tumour suppressor, whereas FOXM1 is a potent oncogene aberrantly overexpressed in genotoxic resistant cancers. FOXO3a not only represses FOXM1 expression but also its transcriptional output. Recent research has provided novel insights into a central role for FOXO3a and FOXM1 in DNA damage response. The FOXO3a-FOXM1 axis plays a pivotal role in DNA damage repair and the accompanied cellular response through regulating the expression of genes essential for DNA damage sensing, mediating, signalling and repair as well as for senescence, cell cycle and cell death control. In this manner, the FOXO3a-FOXM1 axis also holds the key to cell fate decision in response to genotoxic therapeutic agents and controls the equilibrium between DNA repair and cell termination by cell death or senescence. As a consequence, inhibition of FOXM1 or reactivation of FOXO3a in cancer cells could enhance the efficacy of DNA damaging cancer therapies by decreasing the rate of DNA repair and cell survival while increasing senescence and cell death. Conceptually, targeting FOXO3a and FOXM1 may represent a promising molecular therapeutic option for improving the efficacy and selectivity of DNA damage agents, particularly in genotoxic agent resistant cancer. In addition, FOXO3a, FOXM1 and their downstream transcriptional targets may also be reliable diagnostic biomarkers for predicting outcome, for selecting therapeutic options, and for monitoring treatments in DNA-damaging agent therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fatores de Transcrição Forkhead/genética , Neoplasias/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína Forkhead Box M1 , Proteína Forkhead Box O3 , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/tratamento farmacológico
17.
J Cancer Res Clin Oncol ; 142(10): 2119-30, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27520309

RESUMO

UNLABELLED: Multidrug resistance is the major obstacle for successful treatment of breast cancer, prompting the investigation of novel anticancer compounds. PURPOSE: In this study, we tested whether LQB-223, an 11a-N-Tosyl-5-deoxi-pterocarpan newly synthesized compound, could be effective toward breast cancer cells. METHODS: Human breast cell lines MCF-7, MDA-MB-231, HB4a and MCF-7 Dox(R) were used as models for this study. Cell culture, MTT and clonogenic assay, flow cytometry and Western blotting were performed. RESULTS: The LQB-223 decreased cell viability, inhibited colony formation and induced an expressive G2/M arrest in breast cancer cells. There was an induction in p53 and p21(Cip1) protein levels following treatment of wild-type p53 MCF-7 cells, which was not observed in the mutant p53 MDA-MB-231 cell line, providing evidence that the compound might act to modulate the cell cycle regardless of p53 status. In addition, LQB-223 resulted in decreased procaspase levels and increased annexin V staining, suggesting that the apoptotic cascade is also triggered. Importantly, LQB-223 treatment was shown to be less cytotoxic to non-neoplastic breast cells than docetaxel and doxorubicin. Strikingly, exposure of doxorubicin-resistant MCF-7-Dox(R) cells to LQB-223 resulted in suppression of cell viability and proliferation in levels comparable to MCF-7. Of note, MCF-7-Dox(R) cells have an elevated expression of the P-glycoprotein efflux pump when compared to MCF-7. CONCLUSION: Together, these results show that LQB-223 mediates cytotoxic effects in sensitive and resistant breast cancer cells, while presenting low toxicity to non-neoplastic cells. The new compound might represent a potential strategy to induce toxicity in breast cancer cells, especially chemoresistant cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Carcinoma Ductal de Mama/tratamento farmacológico , Pterocarpanos/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Docetaxel , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Fase G2/efeitos dos fármacos , Humanos , Células MCF-7 , Fenótipo , Pterocarpanos/efeitos adversos , Taxoides/efeitos adversos , Taxoides/farmacologia
18.
Cell Signal ; 27(12): 2496-505, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26404623

RESUMO

Drug resistance is a major hurdle for successful treatment of breast cancer, the leading cause of deaths in women throughout the world. The FOXM1 transcription factor is a potent oncogene that transcriptionally regulates a wide range of target genes involved in DNA repair, metastasis, cell invasion, and migration. However, little is known about the role of FOXM1 in cell survival and the gene targets involved. Here, we show that FOXM1-overexpressing breast cancer cells display an apoptosis-resistant phenotype, which associates with the upregulation of expression of XIAP and Survivin antiapoptotic genes. Conversely, FOXM1 knockdown results in XIAP and Survivin downregulation as well as decreased binding of FOXM1 to the promoter regions of XIAP and Survivin. Consistently, FOXM1, XIAP, and Survivin expression levels were higher in taxane and anthracycline-resistant cell lines when compared to their sensitive counterparts and could not be downregulated in response to drug treatment. In agreement with our in vitro findings, we found that FOXM1 expression is significantly associated with Survivin and XIAP expression in samples from patients with IIIa stage breast invasive ductal carcinoma. Importantly, patients co-expressing FOXM1, Survivin, and nuclear XIAP had significantly worst overall survival, further confirming the physiological relevance of the regulation of Survivin and XIAP by FOXM1. Together, these findings suggest that the overexpression of FOXM1, XIAP, and Survivin contributes to the development of drug-resistance and is associated with poor clinical outcome in breast cancer patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fatores de Transcrição Forkhead/fisiologia , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Antibióticos Antineoplásicos/farmacologia , Sequência de Bases , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Sobrevivência Celular , Docetaxel , Doxorrubicina/farmacologia , Feminino , Proteína Forkhead Box M1 , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Inibidoras de Apoptose/genética , Estimativa de Kaplan-Meier , Células MCF-7 , Pessoa de Meia-Idade , Prognóstico , Regiões Promotoras Genéticas , Ligação Proteica , Survivina , Taxoides/farmacologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
19.
Int J Oncol ; 45(5): 1949-58, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25174716

RESUMO

Acute myeloid leukemia (AML) patients' outcome is usually poor, mainly because of drug resistance phenotype. The identification of new drugs able to overcome mechanisms of chemoresistance is essential. The pterocarpanquinone LQB-118 compound has been shown to have a potent cytotoxic activity in myeloid leukemia cell lines and patient cells. Our aim was to investigate if LQB-118 is able to target FoxO3a and FoxM1 signaling pathways while sensitizing AML cell lines. LQB-118 induced apoptosis in both AML cell lines HL60 (M3 FAB subtype) and U937 (M4/M5 FAB subtype). Cell death occurred independently of alterations in cell cycle distribution. In vivo administration revealed that LQB-118 was not cytotoxic to normal bone marrow-derived cells isolated from mice. LQB-118 induced FoxO3a nuclear translocation and upregulation of its direct transcriptional target Bim, in HL60 cells. However, LQB-118 induced FoxO3a nuclear exclusion, followed by Bim downregulation, in U937 cells. Concomitantly, LQB-118 exposure reduced FoxM1 and Survivin expression in U937 cells, but this effect was more subtle in HL60 cells. Taken together, our data suggest that LQB-118 has a selective and potent antitumor activity against AML cells with distinct molecular subtypes, and it involves differential modulation of the signaling pathways associated with FoxO3a and FoxM1 transcription factors.


Assuntos
Fatores de Transcrição Forkhead/biossíntese , Leucemia Mieloide Aguda/tratamento farmacológico , Naftoquinonas/administração & dosagem , Pterocarpanos/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteína Forkhead Box M1 , Proteína Forkhead Box O3 , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos
20.
Leuk Res ; 37(12): 1711-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24210993

RESUMO

ABCB1/P-glycoprotein (Pgp) and ABCG2/BCRP overexpression have been described as related to imatinib resistance in chronic myeloid leukemia (CML). We showed in CML cells from 55 patients that Pgp activity was more frequently detected than BCRP activity (p=0.0074). Imatinib-induced Crkl phosphorylated protein (pCrkl) reduction was more pronounced in K562 (Pgp-negative) than in K562-Lucena (Pgp-positive) CML cell line. Expressive pCrkl reduction levels after in vitro imatinib treatment was observed in samples from patients exhibiting lower Pgp activity levels compared with patients exhibiting higher Pgp activity levels (p=0.0045). Pgp activity in association with pCrkl reduction levels might help to distinguish between imatinib-resistant and imatinib-sensitive CML cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Biomarcadores Tumorais/metabolismo , Criança , Pré-Escolar , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Mesilato de Imatinib , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células MCF-7 , Masculino , Pessoa de Meia-Idade , Fosforilação , Piperazinas/uso terapêutico , Proteínas Quinases/metabolismo , Pirimidinas/uso terapêutico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA