Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918178

RESUMO

Metals are important cofactors in the metabolic processes of cyanobacteria, including photosynthesis, cellular respiration, DNA replication, and the biosynthesis of primary and secondary metabolites. In adaptation to the marine environment, cyanobacteria use metallophores to acquire trace metals when necessary as well as to reduce potential toxicity from excessive metal concentrations. Leptochelins A-C were identified as structurally novel metallophores from three geographically dispersed cyanobacteria of the genus Leptothoe. Determination of the complex structures of these metabolites presented numerous challenges, but they were ultimately solved using integrated data from NMR, mass spectrometry and deductions from the biosynthetic gene cluster. The leptochelins are comprised of halogenated linear NRPS-PKS hybrid products with multiple heterocycles that have potential for hexadentate and tetradentate coordination with metal ions. The genomes of the three leptochelin producers were sequenced, and retrobiosynthetic analysis revealed one candidate biosynthetic gene cluster (BGC) consistent with the structure of leptochelin. The putative BGC is highly homologous in all three Leptothoe strains, and all possess genetic signatures associated with metallophores. Postcolumn infusion of metals using an LC-MS metabolomics workflow performed with leptochelins A and B revealed promiscuous binding of iron, copper, cobalt, and zinc, with greatest preference for copper. Iron depletion and copper toxicity experiments support the hypothesis that leptochelin metallophores may play key ecological roles in iron acquisition and in copper detoxification. In addition, the leptochelins possess significant cytotoxicity against several cancer cell lines.

2.
J Nat Prod ; 84(1): 37-45, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33346651

RESUMO

Bioactivity-guided isolation of Aspergillus ustus led to the discovery of five new drimane sesquiterpenes, named ustusal A, ustusolate F and G, and ustusoic acid A and B, 1-5 respectively. Structural elucidation of these fungal terpenes relied on 1D and 2D NMR techniques, high-resolution mass spectrometry, and chiroptical properties. Their relative configurations were determined by NMR methods, while the absolute configurations were established using comparative analyses of computed and experimental NMR chemical shifts and ECD spectra. The sesquiterpenes exhibited weak activity against the clinically relevant pathogens vancomycin-resistant Enterococcus faecium and multidrug-resistant Staphylococcus aureus; however, the activity of 5 was drastically enhanced when equal amounts of stromemycin (6), a known metabolite coisolated from the same fraction from A. ustus, was added.


Assuntos
Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Aspergillus/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Sesquiterpenos Policíclicos/farmacologia , Sesquiterpenos/farmacologia , Staphylococcus aureus/química , Antibacterianos/química , Antibacterianos/isolamento & purificação , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/isolamento & purificação , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Infecções Estafilocócicas/tratamento farmacológico
3.
Chem Biodivers ; 18(4): e2100046, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33636028

RESUMO

From arid, high desert soil samples collected near Bend, Oregon, 19 unique bacteria were isolated. Each strain was identified by 16S rRNA gene sequencing, and their organic extracts were tested for antibacterial and antiproliferative activities. Noteworthy, six extracts (30 %) exhibited strong inhibition resulting in less than 50 % cell proliferation in more than one cancer cell model, tested at 10 µg/mL. Principal component analysis (PCA) of LC/MS data revealed drastic differences in the metabolic profiles found in the organic extracts of these soil bacteria. In total, fourteen potent antibacterial and/or cytotoxic metabolites were isolated via bioactivity-guided fractionation, including two new natural products: a pyrazinone containing tetrapeptide and 7-methoxy-2,3-dimethyl-4H-chromen-4-one, as well as twelve known compounds: furanonaphthoquinone I, bafilomycin C1 and D, FD-594, oligomycin A, chloramphenicol, MY12-62A, rac-sclerone, isosclerone, tunicamycin VII, tunicamycin VIII, and (6S,16S)-anthrabenzoxocinone 1.264-C.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Solo/química , Antibacterianos/química , Antibacterianos/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/química , Bactérias Gram-Positivas/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Análise de Componente Principal , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Microbiologia do Solo
4.
Fungal Genet Biol ; 132: 103256, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31344458

RESUMO

Many secondary metabolites are produced by biosynthetic gene clusters (BGCs) that are repressed during standard growth conditions, which complicates the discovery of novel bioactive compounds. In the genus Fusarium, many BGCs reside in chromatin enriched for trimethylated histone 3 lysine 27 (H3K27me3), a modification correlated with transcriptional gene silencing. Here we report on our progress in assigning metabolites to genes by using a strain lacking the H3K27 methyltransferase, Kmt6. To guide isolation efforts, we coupled genetics to multivariate analysis of liquid chromatography-mass spectrometry (LCMS) data from both wild type and kmt6, which allowed identification of compounds previously unknown from F. graminearum. We found low molecular weight, amino acid-derived metabolites (N-ethyl anthranilic acid, N-phenethylacetamide, N-acetyltryptamine). We identified one new compound, protofusarin, as derived from fusarin biosynthesis. Similarly, we isolated large amounts of fusaristatin A, gibepyrone A, and fusarpyrones A and B, simply by using the kmt6 mutant, instead of having to optimize growth media. To increase the abundance of metabolites underrepresented in wild type, we generated kmt6 fus1 double mutants and discovered tricinolone and tricinolonoic acid, two new sesquiterpenes belonging to the tricindiol class. Our approach allows rapid visualization and analyses of the genetically induced changes in metabolite production, and discovery of new molecules by a combination of chemical and genetic dereplication. Of 22 fungal metabolites identified here, 10 compounds had not been reported from F. graminearum before. We show that activating silent metabolic pathways by mutation of a repressive chromatin modification enzyme can result in the discovery of new chemistry even in a well-studied organism, and helps to connect new or known small molecules to the BGCs responsible for their production.


Assuntos
Fusarium/genética , Fusarium/metabolismo , Código das Histonas/genética , Metabolômica , Metabolismo Secundário/genética , Vias Biossintéticas/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Histona Metiltransferases/genética , Mutação , Processamento de Proteína Pós-Traducional
5.
Bioorg Med Chem ; 27(16): 3595-3604, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31285097

RESUMO

Inspired by bioactive biaryl-containing natural products found in plants and the marine environment, a series of synthetic compounds belonging to the azaBINOL chiral ligand family was evaluated for antiviral activity against HIV-1. Testing of 39 unique azaBINOLs and two BINOLs in a single-round infectivity assay resulted in the identification of three promising antiviral compounds, including 7-isopropoxy-8-(naphth-1-yl)quinoline (azaBINOL B#24), which exhibited low-micromolar activity without associated cytotoxicity. The active compounds and several close structural analogues were further tested against three different HIV-1 envelope pseudotyped viruses as well as in a full-virus replication system (EASY-HIT). The in vitro studies indicated that azaBINOL B#24 acts on early stages of viral replication before viral assembly and budding. Next we explored B#24's activity against HIV-1 reverse transcriptase (RT) and individually tested for polymerase and RNase H activity. The azaBINOL B#24 inhibits RNase H activity and binds directly to the HIV-1 RT enzyme. Additionally, we observe additive inhibitory activity against pseudotyped viruses when B#24 is dosed in competition with the clinically used non-nucleoside reverse transcriptase inhibitor (NNRTI) efavirenz. When tested against a multi-drug resistant HIV-1 isolate with drug resistance associated mutations in regions encoding for HIV-1 RT and protease, B#24 only exhibits a 5.1-fold net decrease in IC50 value, while efavirenz' activity decreases by 7.6-fold. These results indicate that azaBINOL B#24 is a potentially viable, novel lead for the development of new HIV-1 RNase H inhibitors. Furthermore, this study demonstrates that the survey of libraries of synthetic compounds, designed purely with the goal of facilitating chemical synthesis in mind, may yield unexpected and selective drug leads for the development of new antiviral agents.


Assuntos
Fármacos Anti-HIV/uso terapêutico , HIV-1/efeitos dos fármacos , Quinolinas/uso terapêutico , Ribonuclease H/efeitos dos fármacos , Fármacos Anti-HIV/farmacologia , Humanos , Quinolinas/farmacologia
6.
J Nat Prod ; 82(10): 2780-2789, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557023

RESUMO

Fungal natural products have inspired and enabled countless modern therapeutics. During a survey of the secondary metabolites of endophytic fungi, we found that Aspergillus porosus produces new polyketides with interesting structural features named porosuphenols A-D (1, 2, 3a, and 3b). The structural elucidation of these metabolites was performed with 1D and 2D NMR techniques, Mosher ester analysis, J-based conformational analysis, and isotope exchange studies. The absolute configuration of these compounds was determined using typical approaches including comparative analysis of experimental NMR and electronic circular dichroism spectra with DFT calculations. However, these efforts did not provide conclusive results for porosuphenol A (1). To resolve this issue, we applied a strategy in which NMR data guide the conformer search. Herein are presented the structure elucidation of porosuphenols A-D as a case study in the challenges and opportunities for determination of absolute configuration. Lastly, bioassay-guided fractionation of cytotoxic fractions resulted in the additional isolation of pimarane diterpenes, sphaeropsidin A (4), and aspergiloid E (5).


Assuntos
Aspergillus/metabolismo , Policetídeos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Conformação Molecular , Policetídeos/química , Microbiologia da Água
7.
mSphere ; 9(3): e0047523, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38349154

RESUMO

Reptiles and amphibians (herptiles) are some of the most endangered and threatened species on the planet and numerous conservation strategies are being implemented with the goal of ensuring species recovery. Little is known, however, about the gut microbiome of wild herptiles and how it relates to the health of these populations. Here, we report results from the gut microbiome characterization of both a broad survey of herptiles, and the correlation between the fungus Basidiobolus, and the bacterial community supported by a deeper, more intensive sampling of Plethodon glutinosus, known as slimy salamanders. We demonstrate that bacterial communities sampled from frogs, lizards, and salamanders are structured by the host taxonomy and that Basidiobolus is a common and natural component of these wild gut microbiomes. Intensive sampling of multiple hosts across the ecoregions of Tennessee revealed that geography and host:geography interactions are strong predictors of distinct Basidiobolus operational taxonomic units present within a given host. Co-occurrence analyses of Basidiobolus and bacterial community diversity support a correlation and interaction between Basidiobolus and bacteria, suggesting that Basidiobolus may play a role in structuring the bacterial community. We further the hypothesis that this interaction is advanced by unique specialized metabolism originating from horizontal gene transfer from bacteria to Basidiobolus and demonstrate that Basidiobolus is capable of producing a diversity of specialized metabolites including small cyclic peptides.IMPORTANCEThis work significantly advances our understanding of biodiversity and microbial interactions in herptile microbiomes, the role that fungi play as a structural and functional members of herptile gut microbiomes, and the chemical functions that structure microbiome phenotypes. We also provide an important observational system of how the gut microbiome represents a unique environment that selects for novel metabolic functions through horizontal gene transfer between fungi and bacteria. Such studies are needed to better understand the complexity of gut microbiomes in nature and will inform conservation strategies for threatened species of herpetofauna.


Assuntos
Microbioma Gastrointestinal , Microbiota , Bactérias/genética , Fungos/genética , RNA Ribossômico 16S/genética , Animais
8.
PLoS One ; 19(5): e0303273, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38781236

RESUMO

Lithified layers of complex microbial mats known as microbialites are ubiquitous in the fossil record, and modern forms are increasingly identified globally. A key challenge to developing an understanding of microbialite formation and environmental role is how to investigate complex and diverse communities in situ. We selected living, layered microbialites (stromatolites) in a peritidal environment near Schoenmakerskop, Eastern Cape, South Africa to conduct a spatial survey mapping the composition and small molecule production of the microbial communities from environmental samples. Substrate core samples were collected from nine sampling stations ranging from the upper point of the freshwater inflow to the lower marine interface where tidal overtopping takes place. Substrate cores provided material for parallel analyses of microbial community diversity by 16S rRNA gene amplicon sequencing and metabolomics using LC-MS2. Species and metabolite diversities were correlated, and prominent specialized metabolites were targeted for preliminary characterization. A new series of cyclic hexadepsipeptides, named ibhayipeptolides, was most abundant in substrate cores of submerged microbialites. These results demonstrate the detection and identification of metabolites from mass-limited environmental samples and contribute knowledge about microbialite chemistry and biology, which facilitates future targeted studies of specialized metabolite function and biosynthesis.


Assuntos
Metabolômica , Metabolômica/métodos , África do Sul , RNA Ribossômico 16S/genética , Sedimentos Geológicos/microbiologia , Depsipeptídeos/biossíntese , Depsipeptídeos/química , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação
9.
mBio ; 12(1)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563821

RESUMO

In filamentous fungi, asexual development involves cellular differentiation and metabolic remodeling leading to the formation of intact asexual spores. The development of asexual spores (conidia) in Aspergillus is precisely coordinated by multiple transcription factors (TFs), including VosA, VelB, and WetA. Notably, these three TFs are essential for the structural and metabolic integrity, i.e., proper maturation, of conidia in the model fungus Aspergillus nidulans To gain mechanistic insight into the complex regulatory and interdependent roles of these TFs in asexual sporogenesis, we carried out multi-omics studies on the transcriptome, protein-DNA interactions, and primary and secondary metabolism employing A. nidulans conidia. RNA sequencing and chromatin immunoprecipitation sequencing analyses have revealed that the three TFs directly or indirectly regulate the expression of genes associated with heterotrimeric G-protein signal transduction, mitogen-activated protein (MAP) kinases, spore wall formation and structural integrity, asexual development, and primary/secondary metabolism. In addition, metabolomics analyses of wild-type and individual mutant conidia indicate that these three TFs regulate a diverse array of primary metabolites, including those in the tricarboxylic acid (TCA) cycle, certain amino acids, and trehalose, and secondary metabolites such as sterigmatocystin, emericellamide, austinol, and dehydroaustinol. In summary, WetA, VosA, and VelB play interdependent, overlapping, and distinct roles in governing morphological development and primary/secondary metabolic remodeling in Aspergillus conidia, leading to the production of vital conidia suitable for fungal proliferation and dissemination.IMPORTANCE Filamentous fungi produce a vast number of asexual spores that act as efficient propagules. Due to their infectious and/or allergenic nature, fungal spores affect our daily life. Aspergillus species produce asexual spores called conidia; their formation involves morphological development and metabolic changes, and the associated regulatory systems are coordinated by multiple transcription factors (TFs). To understand the underlying global regulatory programs and cellular outcomes associated with conidium formation, genomic and metabolomic analyses were performed in the model fungus Aspergillus nidulans Our results show that the fungus-specific WetA/VosA/VelB TFs govern the coordination of morphological and chemical developments during sporogenesis. The results of this study provide insights into the interdependent, overlapping, or distinct genetic regulatory networks necessary to produce intact asexual spores. The findings are relevant for other Aspergillus species such as the major human pathogen Aspergillus fumigatus and the aflatoxin producer Aspergillus flavus.


Assuntos
Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Perfilação da Expressão Gênica , Genes Fúngicos , Metabolômica , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Aspergillus nidulans/crescimento & desenvolvimento , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Proteômica , Reprodução Assexuada/genética , Esporos Fúngicos/crescimento & desenvolvimento , Transcriptoma
10.
Chem Commun (Camb) ; 51(8): 1417-20, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25503678

RESUMO

(1)H NMR spectroscopic and X-ray crystallographic investigations of a 1,3-bis(4-ethynyl-3-iodopyridinium)benzene scaffold with perrhenate reveal strong halogen bonding in solution, and bidentate association in the solid state. A nearly isostructural host molecule demonstrates significant C-H hydrogen bonding to perrhenate in the same phases.


Assuntos
Halogênios/química , Rênio/química , Derivados de Benzeno/química , Cristalografia por Raios X , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA