Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Nucleic Acids Res ; 52(9): 5376-5391, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38412299

RESUMO

The RNA helicase UPF1 interacts with mRNAs, mRNA decay machinery, and the terminating ribosome to promote nonsense-mediated mRNA decay (NMD). Structural and biochemical data have revealed that UPF1 exists in an enzymatically autoinhibited 'closed' state. Upon binding the NMD protein UPF2, UPF1 undergoes an extensive conformational change into a more enzymatically active 'open' state, which exhibits enhanced ATPase and helicase activity. However, mechanically deficient UPF1 mutants (i.e. poorly processive, slow, and mechanochemically uncoupled) can support efficient NMD, bringing into question the roles of UPF1 enzymatic autoinhibition and activation in NMD. Here, we identify two additional important features of the activated open state: slower RNA binding kinetics and enhanced ATP-stimulated RNA dissociation kinetics. Computational modeling based on empirical measurements of UPF1, UPF2 and RNA interaction kinetics predicts that the majority of UPF1-RNA binding and dissociation events in cells occur independently of UPF2 binding. We find that UPF1 mutants with either reduced or accelerated dissociation from RNA have NMD defects, whereas UPF1 mutants that are more dependent on UPF2 for catalytic activity remain active on well-established NMD targets. These findings support a model in which the kinetics of UPF1-mRNA interactions are important determinants of cellular NMD efficiency.


Assuntos
Adenosina Trifosfatases , Degradação do RNAm Mediada por Códon sem Sentido , RNA Helicases , RNA Mensageiro , Humanos , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Cinética , Mutação , Ligação Proteica , RNA Helicases/metabolismo , RNA Helicases/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Transativadores/metabolismo , Transativadores/genética
2.
Nucleic Acids Res ; 52(16): 9777-9787, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39106172

RESUMO

Type II topoisomerases (topos) are a ubiquitous and essential class of enzymes that form transient enzyme-bound double-stranded breaks on DNA called cleavage complexes. The location and frequency of these cleavage complexes on DNA is important for cellular function, genomic stability and a number of clinically important anticancer and antibacterial drugs, e.g. quinolones. We developed a simple high-accuracy end-sequencing (SHAN-seq) method to sensitively map type II topo cleavage complexes on DNA in vitro. Using SHAN-seq, we detected Escherichia coli gyrase and topoisomerase IV cleavage complexes at hundreds of sites on supercoiled pBR322 DNA, approximately one site every ten bp, with frequencies that varied by two-to-three orders of magnitude. These sites included previously identified sites and 20-50-fold more new sites. We show that the location and frequency of cleavage complexes at these sites are enzyme-specific and vary substantially in the presence of the quinolone, ciprofloxacin, but not with DNA supercoil chirality, i.e. negative versus positive supercoiling. SHAN-seq's exquisite sensitivity provides an unprecedented single-nucleotide resolution view of the distribution of gyrase and topoisomerase IV cleavage complexes on DNA. Moreover, the discovery that these enzymes can cleave DNA at orders of magnitude more sites than the relatively few previously known sites resolves the apparent paradox of how these enzymes resolve topological problems throughout the genome.


Assuntos
Clivagem do DNA , DNA Girase , DNA Topoisomerase IV , DNA Topoisomerases Tipo II , Escherichia coli , Escherichia coli/genética , Escherichia coli/enzimologia , DNA Girase/metabolismo , DNA Girase/genética , DNA Girase/química , DNA Topoisomerase IV/metabolismo , DNA Topoisomerase IV/genética , DNA Topoisomerase IV/química , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/genética , Análise de Sequência de DNA/métodos , DNA Super-Helicoidal/metabolismo , DNA Super-Helicoidal/química , Ciprofloxacina/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala , DNA/metabolismo , DNA/química
3.
Proc Natl Acad Sci U S A ; 120(3): e2212507120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36626558

RESUMO

Intracellular cargos are often membrane-enclosed and transported by microtubule-based motors in the presence of microtubule-associated proteins (MAPs). Whereas increasing evidence reveals how MAPs impact the interactions between motors and microtubules, critical questions remain about the impact of the cargo membrane on transport. Here we combined in vitro optical trapping with theoretical approaches to determine the effect of a lipid cargo membrane on kinesin-based transport in the presence of MAP tau. Our results demonstrate that attaching kinesin to a fluid lipid membrane reduces the inhibitory effect of tau on kinesin. Moreover, adding cholesterol, which reduces kinesin diffusion in the cargo membrane, amplifies the inhibitory effect of tau on kinesin binding in a dosage-dependent manner. We propose that reduction of kinesin diffusion in the cargo membrane underlies the effect of cholesterol on kinesin binding in the presence of tau, and we provide a simple model for this proposed mechanism. Our study establishes a direct link between cargo membrane cholesterol and MAP-based regulation of kinesin-1. The cholesterol effects uncovered here may more broadly extend to other lipid alterations that impact motor diffusion in the cargo membrane, including those associated with aging and neurological diseases.


Assuntos
Cinesinas , Proteínas Associadas aos Microtúbulos , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Transporte Biológico/fisiologia , Lipídeos
4.
Nucleic Acids Res ; 51(8): 3888-3902, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36999602

RESUMO

To perform double-stranded DNA passage, type II topoisomerases generate a covalent enzyme-cleaved DNA complex (i.e. cleavage complex). Although this complex is a requisite enzyme intermediate, it is also intrinsically dangerous to genomic stability. Consequently, cleavage complexes are the targets for several clinically relevant anticancer and antibacterial drugs. Human topoisomerase IIα and IIß and bacterial gyrase maintain higher levels of cleavage complexes with negatively supercoiled over positively supercoiled DNA substrates. Conversely, bacterial topoisomerase IV is less able to distinguish DNA supercoil handedness. Despite the importance of supercoil geometry to the activities of type II topoisomerases, the basis for supercoil handedness recognition during DNA cleavage has not been characterized. Based on the results of benchtop and rapid-quench flow kinetics experiments, the forward rate of cleavage is the determining factor of how topoisomerase IIα/IIß, gyrase and topoisomerase IV distinguish supercoil handedness in the absence or presence of anticancer/antibacterial drugs. In the presence of drugs, this ability can be enhanced by the formation of more stable cleavage complexes with negatively supercoiled DNA. Finally, rates of enzyme-mediated DNA ligation do not contribute to the recognition of DNA supercoil geometry during cleavage. Our results provide greater insight into how type II topoisomerases recognize their DNA substrates.


Assuntos
Antineoplásicos , DNA Topoisomerase IV , Humanos , DNA Topoisomerase IV/genética , DNA Super-Helicoidal , Clivagem do DNA , Lateralidade Funcional , DNA Topoisomerases Tipo II/genética , DNA
5.
Soft Matter ; 20(28): 5509-5515, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38832814

RESUMO

Kinesin-streptavidin complexes are widely used in microtubule-based active-matter studies. The stoichiometry of the complexes is empirically tuned but experimentally challenging to determine. Here, mass photometry measurements reveal heterogenous distributions of kinesin-streptavidin complexes. Our binding model indicates that heterogeneity arises from both the kinesin-streptavidin mixing ratio and the kinesin-biotinylation efficiency.

6.
Nucleic Acids Res ; 50(20): 11876-11894, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36370101

RESUMO

The conserved RNA helicase UPF1 coordinates nonsense-mediated mRNA decay (NMD) by engaging with mRNAs, RNA decay machinery and the terminating ribosome. UPF1 ATPase activity is implicated in mRNA target discrimination and completion of decay, but the mechanisms through which UPF1 enzymatic activities such as helicase, translocase, RNP remodeling, and ATPase-stimulated dissociation influence NMD remain poorly defined. Using high-throughput biochemical assays to quantify UPF1 enzymatic activities, we show that UPF1 is only moderately processive (<200 nt) in physiological contexts and undergoes ATPase-stimulated dissociation from RNA. We combine an in silico screen with these assays to identify and characterize known and novel UPF1 mutants with altered helicase, ATPase, and RNA binding properties. We find that UPF1 mutants with substantially impaired processivity (E797R, G619K/A546H), faster (G619K) or slower (K547P, E797R, G619K/A546H) unwinding rates, and/or reduced mechanochemical coupling (i.e. the ability to harness ATP hydrolysis for work; K547P, R549S, G619K, G619K/A546H) can still support efficient NMD of well-characterized targets in human cells. These data are consistent with a central role for UPF1 ATPase activity in driving cycles of RNA binding and dissociation to ensure accurate NMD target selection.


Assuntos
Adenosina Trifosfatases , Degradação do RNAm Mediada por Códon sem Sentido , Humanos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Transativadores/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , DNA Helicases/genética , RNA/metabolismo
7.
Nucleic Acids Res ; 50(18): 10601-10613, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36165957

RESUMO

Helicases are essential for nearly all nucleic acid processes across the tree of life, yet detailed understanding of how they couple ATP hydrolysis to translocation and unwinding remains incomplete because their small (∼300 picometer), fast (∼1 ms) steps are difficult to resolve. Here, we use Nanopore Tweezers to observe single Escherichia coli RecQ helicases as they translocate on and unwind DNA at ultrahigh spatiotemporal resolution. Nanopore Tweezers simultaneously resolve individual steps of RecQ along the DNA and conformational changes of the helicase associated with stepping. Our data reveal the mechanochemical coupling between physical domain motions and chemical reactions that together produce directed motion of the helicase along DNA. Nanopore Tweezers measurements are performed under either assisting or opposing force applied directly on RecQ, shedding light on how RecQ responds to such forces in vivo. Determining the rates of translocation and physical conformational changes under a wide range of assisting and opposing forces reveals the underlying dynamic energy landscape that drives RecQ motion. We show that RecQ has a highly asymmetric energy landscape that enables RecQ to maintain velocity when encountering molecular roadblocks such as bound proteins and DNA secondary structures. This energy landscape also provides a mechanistic basis making RecQ an 'active helicase,' capable of unwinding dsDNA as fast as it translocates on ssDNA. Such an energy landscape may be a general strategy for molecular motors to maintain consistent velocity despite opposing loads or roadblocks.


Assuntos
RecQ Helicases/química , Trifosfato de Adenosina/metabolismo , DNA de Cadeia Simples , Escherichia coli/genética , Escherichia coli/metabolismo , Nanoporos , Ácidos Nucleicos , RecQ Helicases/metabolismo
8.
Biophys J ; 122(17): 3439-3446, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37496270

RESUMO

Optical trapping in biophysics typically uses micron-scale beads made of materials like polystyrene or glass to probe the target of interest. Using smaller beads made of higher-index materials could increase the time resolution of these measurements. We characterized the trapping of nanoscale beads made of diamond and titanium dioxide (TiO2) in a single-beam gradient trap. Calculating theoretical expectations for the trapping stiffness of these beads, we found good agreement with measured values. Trap stiffness was significantly higher for TiO2 beads, owing to notable enhancement from nonlinear optical effects, not previously observed for continuous-wave trapping. Trap stiffness was over 6-fold higher for TiO2 beads than polystyrene beads of similar size at 70 mW laser power. These results suggest that diamond and TiO2 nanobeads can be used to improve time resolution in optical tweezers measurements.


Assuntos
Nanopartículas , Pinças Ópticas , Poliestirenos , Lasers
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA