RESUMO
Alpha-synuclein (aSN) is a membrane-associated and intrinsically disordered protein, well known for pathological aggregation in neurodegeneration. However, the physiological function of aSN is disputed. Pull-down experiments have pointed to plasma membrane Ca2+ -ATPase (PMCA) as a potential interaction partner. From proximity ligation assays, we find that aSN and PMCA colocalize at neuronal synapses, and we show that calcium expulsion is activated by aSN and PMCA. We further show that soluble, monomeric aSN activates PMCA at par with calmodulin, but independent of the autoinhibitory domain of PMCA, and highly dependent on acidic phospholipids and membrane-anchoring properties of aSN. On PMCA, the key site is mapped to the acidic lipid-binding site, located within a disordered PMCA-specific loop connecting the cytosolic A domain and transmembrane segment 3. Our studies point toward a novel physiological role of monomeric aSN as a stimulator of calcium clearance in neurons through activation of PMCA.
Assuntos
Cálcio , alfa-Sinucleína , Cálcio/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Membrana Celular/metabolismo , Adenosina Trifosfatases/metabolismo , Sítios de LigaçãoRESUMO
Diffusion measurements by pulsed-field gradient NMR and fluorescence correlation spectroscopy can be used to probe the hydrodynamic radius of proteins, which contains information about the overall dimension of a protein in solution. The comparison of this value with structural models of intrinsically disordered proteins is nonetheless impaired by the uncertainty of the accuracy of the methods for computing the hydrodynamic radius from atomic coordinates. To tackle this issue, we here build conformational ensembles of 11 intrinsically disordered proteins that we ensure are in agreement with measurements of compaction by small-angle x-ray scattering. We then use these ensembles to identify the forward model that more closely fits the radii derived from pulsed-field gradient NMR diffusion experiments. Of the models we examined, we find that the Kirkwood-Riseman equation provides the best description of the hydrodynamic radius probed by pulsed-field gradient NMR experiments. While some minor discrepancies remain, our results enable better use of measurements of the hydrodynamic radius in integrative modeling and for force field benchmarking and parameterization.
Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Rádio (Anatomia)/metabolismo , Hidrodinâmica , Conformação Proteica , Espectrometria de Fluorescência , Espalhamento a Baixo ÂnguloRESUMO
As the understanding of immune responses in Alzheimer's disease (AD) is in its early phases, there remains an urgency to identify the cellular and molecular processes driving chronic inflammation. In AD, a subpopulation of astrocytes acquires a neurotoxic phenotype which prompts them to lose typical physiological features. While the underlying molecular mechanisms are still unknown, evidence suggests that myeloid differentiation primary response 88 (MyD88) adaptor protein may play a role in coordinating these cells' immune responses in AD. Herein, we combined studies in human postmortem samples with a conditional genetic knockout mouse model to investigate the link between MyD88 and astrocytes in AD. In silico analyses of bulk and cell-specific transcriptomic data from human postmortem brains demonstrated an upregulation of MyD88 expression in astrocytes in AD versus non-AD individuals. Proteomic studies revealed an increase in glial fibrillary acidic protein in multiple brain regions of AD subjects. These studies also showed that although overall MyD88 steady-state levels were unaffected by AD, this protein was enriched in astrocytes near amyloid plaques and neurofibrillary tangles. Functional studies in mice indicated that the deletion of astrocytic MyD88 protected animals from the acute synaptic toxicity and cognitive impairment caused by the intracerebroventricular administration of ß-amyloid (Aß). Lastly, unbiased proteomic analysis revealed that loss of astrocytic MyD88 resulted in altered astrocyte reactivity, lower levels of immune-related proteins, and higher expression of synaptic-related proteins in response to Aß. Our studies provide evidence of the pivotal role played by MyD88 in the regulation of astrocytes response to AD.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Animais , Camundongos , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Proteômica , Doença de Alzheimer/patologiaRESUMO
The hippocampal dentate gyrus (DG) is a major region of the adult rodent brain in which neurogenesis occurs throughout life. The EphA4 receptor, which regulates neurogenesis and boundary formation in the developing brain, is also expressed in the adult DG, but whether it regulates adult hippocampal neurogenesis is not known. Here, we show that, in the adult mouse brain, EphA4 inhibits hippocampal precursor cell proliferation but does not affect precursor differentiation or survival. Genetic deletion or pharmacological inhibition of EphA4 significantly increased hippocampal precursor proliferation in vivo and in vitro, by blocking EphA4 forward signaling. EphA4 was expressed by mature hippocampal DG neurons but not neural precursor cells, and an EphA4 antagonist, EphA4-Fc, did not activate clonal cultures of precursors until they were co-cultured with non-precursor cells, indicating an indirect effect of EphA4 on the regulation of precursor activity. Supplementation with d-serine blocked the increased precursor proliferation induced by EphA4 inhibition, whereas blocking the interaction between d-serine and N-methyl-d-aspartate receptors (NMDARs) promoted precursor activity, even at the clonal level. Collectively, these findings demonstrate that EphA4 indirectly regulates adult hippocampal precursor proliferation and thus plays a role in neurogenesis via d-serine-regulated NMDAR signaling.
Assuntos
Giro Denteado/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Receptor EphA4/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor EphA4/genética , Transdução de SinaisRESUMO
Alzheimer's disease (AD) is a neurodegenerative disorder, most cases of which lack a clear causative event. This has made the disease difficult to characterize and, thus, diagnose. Although some cases are genetically linked, there are many diseases and lifestyle factors that can lead to an increased risk of developing AD, including traumatic brain injury, diabetes, hypertension, obesity, and other metabolic syndromes, in addition to aging. Identifying common factors and trends between these conditions could enhance our understanding of AD and lead to the development of more effective treatments. Although the immune system is one of the body's key defense mechanisms, chronic inflammation has been increasingly linked with several age-related diseases. Moreover, it is now well accepted that chronic inflammation has an important role in the onset and progression of AD. In this review, the different inflammatory signals associated with AD and its risk factors will be outlined to demonstrate how chronic inflammation may be influencing individual susceptibility to AD. Our goal is to bring attention to potential shared signals presented by the immune system during different conditions that could lead to the development of successful treatments.
Assuntos
Doença de Alzheimer , Inflamação , Envelhecimento/patologia , Doença de Alzheimer/complicações , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Inflamação/complicações , Inflamação/epidemiologia , Inflamação/genética , Neurônios/metabolismo , Neurônios/patologiaRESUMO
Astrocytes play a role in healthy cognitive function and Alzheimer's disease (AD). The transcriptional factor nuclear factor-κB (NF-κB) drives astrocyte diversity, but the mechanisms are not fully understood. By combining studies in human brains and animal models and selectively manipulating NF-κB function in astrocytes, we deepened the understanding of the role of astrocytic NF-κB in brain health and AD. In silico analysis of bulk and cell-specific transcriptomic data revealed the association of NF-κB and astrocytes in AD. Confocal studies validated the higher level of p50 NF-κB and phosphorylated-p65 NF-κB in glial fibrillary acidic protein (GFAP)+-astrocytes in AD versus non-AD subjects. In the healthy mouse brain, chronic activation of astrocytic NF-κB disturbed the proteomic milieu, causing a loss of mitochondrial-associated proteins and the rise of inflammatory-related proteins. Sustained NF-κB signaling also led to microglial reactivity, production of pro-inflammatory mediators, and buildup of senescence-related protein p16INK4A in neurons. However, in an AD mouse model, NF-κB inhibition accelerated ß-amyloid and tau accumulation. Molecular biology studies revealed that astrocytic NF-κB activation drives the increase in GFAP and inflammatory proteins and aquaporin-4, a glymphatic system protein that assists in mitigating AD. Our investigation uncovered fundamental mechanisms by which NF-κB enables astrocytes' neuroprotective and neurotoxic responses in the brain.
Assuntos
Doença de Alzheimer , Astrócitos , Encéfalo , NF-kappa B , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , NF-kappa B/metabolismo , Transdução de SinaisRESUMO
Phosphorylation is the most common post-translational modification (PTM) in eukaryotes, occurring particularly frequently in intrinsically disordered proteins (IDPs). These proteins are highly flexible and dynamic by nature. Thus, it is intriguing that the addition of a single phosphoryl group to a disordered chain can impact its function so dramatically. Furthermore, as many IDPs carry multiple phosphorylation sites, the number of possible states increases, enabling larger complexities and novel mechanisms. Although a chemically simple and well-understood process, the impact of phosphorylation on the conformational ensemble and molecular function of IDPs, not to mention biological output, is highly complex and diverse. Since the discovery of the first phosphorylation site in proteins 75 years ago, we have come to a much better understanding of how this PTM works, but with the diversity of IDPs and their capacity for carrying multiple phosphoryl groups, the complexity grows. In this Essay, we highlight some of the basic effects of IDP phosphorylation, allowing it to serve as starting point when embarking on studies into this topic. We further describe how recent complex cases of multisite phosphorylation of IDPs have been instrumental in widening our view on the effect of protein phosphorylation. Finally, we put forward perspectives on the phosphorylation of IDPs, both in relation to disease and in context of other PTMs; areas where deep insight remains to be uncovered.
Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Fosforilação , Processamento de Proteína Pós-Traducional , Conformação ProteicaRESUMO
Compared to folded proteins, the sequences of intrinsically disordered proteins (IDPs) are enriched in polar and charged amino acids. Glutamate is one of the most enriched amino acids in IDPs, while the chemically similar amino acid aspartate is less enriched. So far, the underlying functional differences between glutamates and aspartates in IDPs remain poorly understood. In this study, we examine the differential effects of aspartate and glutamates in IDPs by comparing the function and conformational ensemble of glutamate and aspartate variants of the disordered protein Dss1, using a range of assays, including interaction studies, nuclear magnetic resonance spectroscopy, small-angle X-ray scattering and molecular dynamics simulation. First, we analyze the sequences of the rapidly growing database of experimentally verified IDPs (DisProt) and show that glutamate enrichment is not caused by a taxonomy bias in IDPs. From analyses of local and global structural properties as well as cell growth and protein-protein interactions using a model acidic IDP from yeast and three Glu/Asp variants, we find that while the Glu/Asp variants support similar function and global dimensions, the variants differ in their binding affinities and population of local transient structural elements. We speculate that these local structural differences may play roles in functional diversity, where glutamates can support increased helicity, important for folding and binding, while aspartates support extended structures and form helical caps, as well as playing more relevant roles in, e.g., transactivation domains and ion-binding.
Assuntos
Proteínas Intrinsicamente Desordenadas , Ácido Aspártico , Ácido Glutâmico , Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Conformação ProteicaRESUMO
The inherent flexibility of intrinsically disordered proteins (IDPs) makes it difficult to interpret experimental data using structural models. On the other hand, molecular dynamics simulations of IDPs often suffer from force-field inaccuracies, and long simulation times or enhanced sampling methods are needed to obtain converged ensembles. Here, we apply metainference and Bayesian/Maximum Entropy reweighting approaches to integrate prior knowledge of the system with experimental data, while also dealing with various sources of errors and the inherent conformational heterogeneity of IDPs. We have measured new SAXS data on the protein α-synuclein, and integrate this with simulations performed using different force fields. We find that if the force field gives rise to ensembles that are much more compact than what is implied by the SAXS data it is difficult to recover a reasonable ensemble. On the other hand, we show that when the simulated ensemble is reasonable, we can obtain an ensemble that is consistent with the SAXS data, but also with NMR diffusion and paramagnetic relaxation enhancement data.
RESUMO
Motifs within proteins help us categorize their functions. Intrinsically disordered proteins (IDPs) are rich in short linear motifs, conferring them many different roles. IDPs are also frequently highly charged and, therefore, likely to interact with ions. Canonical calcium-binding motifs, such as the EF-hand, often rely on the formation of stabilizing flanking helices, which are a key characteristic of folded proteins, but are absent in IDPs. In this study, we probe the existence of a calcium-binding motif relevant to IDPs. Upon screening several carefully selected IDPs using NMR spectroscopy supplemented with affinity quantification by colorimetric assays, we found calcium-binding motifs in IDPs which could be categorized into at least two groups-an Excalibur-like motif, sequentially similar to the EF-hand loop, and a condensed-charge motif carrying repetitive negative charges. The motifs show an affinity for calcium typically in the ~100 µM range relevant to regulatory functions and, while calcium binding to the condensed-charge motif had little effect on the overall compaction of the IDP chain, calcium binding to Excalibur-like motifs resulted in changes in compaction. Thus, calcium binding to IDPs may serve various structural and functional roles that have previously been underreported.
Assuntos
Cálcio/metabolismo , Proteínas Intrinsicamente Desordenadas , Precursores de Proteínas/química , Trocador 1 de Sódio-Hidrogênio/química , Timosina/análogos & derivados , alfa-Sinucleína/química , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Timosina/químicaRESUMO
As the median age of the population increases, the number of individuals with Alzheimer's disease (AD) and the associated socio-economic burden are predicted to worsen. While aging and inherent genetic predisposition play major roles in the onset of AD, lifestyle, physical fitness, medical condition, and social environment have emerged as relevant disease modifiers. These environmental risk factors can play a key role in accelerating or decelerating disease onset and progression. Among known environmental risk factors, chronic exposure to various metals has become more common among the public as the aggressive pace of anthropogenic activities releases excess amount of metals into the environment. As a result, we are exposed not only to essential metals, such as iron, copper, zinc and manganese, but also to toxic metals including lead, aluminum, and cadmium, which perturb metal homeostasis at the cellular and organismal levels. Herein, we review how these metals affect brain physiology and immunity, as well as their roles in the accumulation of toxic AD proteinaceous species (i.e., ß-amyloid and tau). We also discuss studies that validate the disruption of immune-related pathways as an important mechanism of toxicity by which metals can contribute to AD. Our goal is to increase the awareness of metals as players in the onset and progression of AD.
Assuntos
Envelhecimento/genética , Alumínio/toxicidade , Doença de Alzheimer/genética , Cádmio/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Chumbo/toxicidade , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Exposição Ambiental/efeitos adversos , Humanos , Inflamação , Estilo de Vida , Aptidão Física , Presenilina-1/genética , Presenilina-1/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismoRESUMO
Soluble huntingtin exon 1 (Httex1) with expanded polyglutamine (polyQ) engenders neurotoxicity in Huntington's disease. To uncover the physical basis of this toxicity, we performed structural studies of soluble Httex1 for wild-type and mutant polyQ lengths. Nuclear magnetic resonance experiments show evidence for conformational rigidity across the polyQ region. In contrast, hydrogen-deuterium exchange shows absence of backbone amide protection, suggesting negligible persistence of hydrogen bonds. The seemingly conflicting results are explained by all-atom simulations, which show that Httex1 adopts tadpole-like structures with a globular head encompassing the N-terminal amphipathic and polyQ regions and the tail encompassing the C-terminal proline-rich region. The surface area of the globular domain increases monotonically with polyQ length. This stimulates sharp increases in gain-of-function interactions in cells for expanded polyQ, and one of these interactions is with the stress-granule protein Fus. Our results highlight plausible connections between Httex1 structure and routes to neurotoxicity.
Assuntos
Mutação com Ganho de Função , Proteína Huntingtina/química , Proteína Huntingtina/genética , Doença de Huntington/genética , Peptídeos/genética , Linhagem Celular , Medição da Troca de Deutério , Éxons , Humanos , Proteína Huntingtina/metabolismo , Ligação de Hidrogênio , Domínios Proteicos , Estrutura Secundária de Proteína , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/metabolismoRESUMO
Competing models exist in the literature for the relationship between mutant Huntingtin exon 1 (Httex1) inclusion formation and toxicity. In one, inclusions are adaptive by sequestering the proteotoxicity of soluble Httex1. In the other, inclusions compromise cellular activity as a result of proteome co-aggregation. Using a biosensor of Httex1 conformation in mammalian cell models, we discovered a mechanism that reconciles these competing models. Newly formed inclusions were composed of disordered Httex1 and ribonucleoproteins. As inclusions matured, Httex1 reconfigured into amyloid, and other glutamine-rich and prion domain-containing proteins were recruited. Soluble Httex1 caused a hyperpolarized mitochondrial membrane potential, increased reactive oxygen species, and promoted apoptosis. Inclusion formation triggered a collapsed mitochondrial potential, cellular quiescence, and deactivated apoptosis. We propose a revised model where sequestration of soluble Httex1 inclusions can remove the trigger for apoptosis but also co-aggregate other proteins, which curtails cellular metabolism and leads to a slow death by necrosis.
Assuntos
Amiloide/metabolismo , Apoptose , Proteína Huntingtina/genética , Éxons , Células HEK293 , Células HeLa , Humanos , Proteína Huntingtina/metabolismo , Corpos de Inclusão/metabolismo , Potencial da Membrana Mitocondrial , Mutação , Espécies Reativas de Oxigênio/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismoRESUMO
Prion-like domains (PLDs) are low complexity sequences found in RNA binding proteins associated with the neurodegenerative disorder amyotrophic lateral sclerosis. Recently, PLDs have been implicated in mediating gene regulation via liquid-phase transitions that drive ribonucleoprotein granule assembly. In this paper, we report many PLDs in proteins associated with paraspeckles, subnuclear bodies that form around long noncoding RNA. We mapped the interactome network of paraspeckle proteins, finding enrichment of PLDs. We show that one protein, RBM14, connects key paraspeckle subcomplexes via interactions mediated by its PLD. We further show that the RBM14 PLD, as well as the PLD of another essential paraspeckle protein, FUS, is required to rescue paraspeckle formation in cells in which their endogenous counterpart has been knocked down. Similar to FUS, the RBM14 PLD also forms hydrogels with amyloid-like properties. These results suggest a role for PLD-mediated liquid-phase transitions in paraspeckle formation, highlighting this nuclear body as an excellent model system for understanding the perturbation of such processes in neurodegeneration.