Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Brain ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375207

RESUMO

Post-mortem studies have shown that patients dying from severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection frequently have pathological changes in their CNS, particularly in the brainstem. Many of these changes are proposed to result from para-infectious and/or post-infection immune responses. Clinical symptoms such as fatigue, breathlessness, and chest pain are frequently reported in post-hospitalized coronavirus disease 2019 (COVID-19) patients. We propose that these symptoms are in part due to damage to key neuromodulatory brainstem nuclei. While brainstem involvement has been demonstrated in the acute phase of the illness, the evidence of long-term brainstem change on MRI is inconclusive. We therefore used ultra-high field (7 T) quantitative susceptibility mapping (QSM) to test the hypothesis that brainstem abnormalities persist in post-COVID patients and that these are associated with persistence of key symptoms. We used 7 T QSM data from 30 patients, scanned 93-548 days after hospital admission for COVID-19 and compared them to 51 age-matched controls without prior history of COVID-19 infection. We correlated the patients' QSM signals with disease severity (duration of hospital admission and COVID-19 severity scale), inflammatory response during the acute illness (C-reactive protein, D-dimer and platelet levels), functional recovery (modified Rankin scale), depression (Patient Health Questionnaire-9) and anxiety (Generalized Anxiety Disorder-7). In COVID-19 survivors, the MR susceptibility increased in the medulla, pons and midbrain regions of the brainstem. Specifically, there was increased susceptibility in the inferior medullary reticular formation and the raphe pallidus and obscurus. In these regions, patients with higher tissue susceptibility had worse acute disease severity, higher acute inflammatory markers, and significantly worse functional recovery. This study contributes to understanding the long-term effects of COVID-19 and recovery. Using non-invasive ultra-high field 7 T MRI, we show evidence of brainstem pathophysiological changes associated with inflammatory processes in post-hospitalized COVID-19 survivors.

2.
Brain ; 146(8): 3484-3499, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36811945

RESUMO

Chronic post-concussive symptoms are common after mild traumatic brain injury (mTBI) and are difficult to predict or treat. Thalamic functional integrity is particularly vulnerable in mTBI and may be related to long-term outcomes but requires further investigation. We compared structural MRI and resting state functional MRI in 108 patients with a Glasgow Coma Scale (GCS) of 13-15 and normal CT, and 76 controls. We examined whether acute changes in thalamic functional connectivity were early markers for persistent symptoms and explored neurochemical associations of our findings using PET data. Of the mTBI cohort, 47% showed incomplete recovery 6 months post-injury. Despite the absence of structural changes, we found acute thalamic hyperconnectivity in mTBI, with specific vulnerabilities of individual thalamic nuclei. Acute fMRI markers differentiated those with chronic post-concussive symptoms, with time- and outcome-dependent relationships in a sub-cohort followed longitudinally. Moreover, emotional and cognitive symptoms were associated with changes in thalamic functional connectivity to known serotonergic and noradrenergic targets, respectively. Our findings suggest that chronic symptoms can have a basis in early thalamic pathophysiology. This may aid identification of patients at risk of chronic post-concussive symptoms following mTBI, provide a basis for development of new therapies and facilitate precision medicine application of these therapies.


Assuntos
Concussão Encefálica , Lesões Encefálicas , Síndrome Pós-Concussão , Humanos , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico por imagem , Síndrome Pós-Concussão/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Emoções , Imageamento por Ressonância Magnética , Encéfalo
3.
J Immunol ; 207(1): 90-100, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34145056

RESUMO

Most of the variation in outcome following severe traumatic brain injury (TBI) remains unexplained by currently recognized prognostic factors. Neuroinflammation may account for some of this difference. We hypothesized that TBI generated variable autoantibody responses between individuals that would contribute to outcome. We developed a custom protein microarray to detect autoantibodies to both CNS and systemic Ags in serum from the acute-phase (the first 7 d), late (6-12 mo), and long-term (6-13 y) intervals after TBI in human patients. We identified two distinct patterns of immune response to TBI. The first was a broad response to the majority of Ags tested, predominantly IgM mediated in the acute phase, then IgG dominant at late and long-term time points. The second was responses to specific Ags, most frequently myelin-associated glycopeptide (MAG), which persisted for several months post-TBI but then subsequently resolved. Exploratory analyses suggested that patients with a greater acute IgM response experienced worse outcomes than predicted from current known risk factors, suggesting a direct or indirect role in worsening outcome. Furthermore, late persistence of anti-MAG IgM autoantibodies correlated with raised serum neurofilament light concentrations at these time points, suggesting an association with ongoing neurodegeneration over the first year postinjury. Our results show that autoantibody production occurs in some individuals following TBI, can persist for many years, and is associated with worse patient outcome. The complexity of responses means that conventional approaches based on measuring responses to single antigenic targets may be misleading.


Assuntos
Autoanticorpos/imunologia , Lesões Encefálicas Traumáticas/imunologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Brain ; 145(6): 2064-2076, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35377407

RESUMO

There is substantial interest in the potential for traumatic brain injury to result in progressive neurological deterioration. While blood biomarkers such as glial fibrillary acid protein (GFAP) and neurofilament light have been widely explored in characterizing acute traumatic brain injury (TBI), their use in the chronic phase is limited. Given increasing evidence that these proteins may be markers of ongoing neurodegeneration in a range of diseases, we examined their relationship to imaging changes and functional outcome in the months to years following TBI. Two-hundred and three patients were recruited in two separate cohorts; 6 months post-injury (n = 165); and >5 years post-injury (n = 38; 12 of whom also provided data ∼8 months post-TBI). Subjects underwent blood biomarker sampling (n = 199) and MRI (n = 172; including diffusion tensor imaging). Data from patient cohorts were compared to 59 healthy volunteers and 21 non-brain injury trauma controls. Mean diffusivity and fractional anisotropy were calculated in cortical grey matter, deep grey matter and whole brain white matter. Accelerated brain ageing was calculated at a whole brain level as the predicted age difference defined using T1-weighted images, and at a voxel-based level as the annualized Jacobian determinants in white matter and grey matter, referenced to a population of 652 healthy control subjects. Serum neurofilament light concentrations were elevated in the early chronic phase. While GFAP values were within the normal range at ∼8 months, many patients showed a secondary and temporally distinct elevations up to >5 years after injury. Biomarker elevation at 6 months was significantly related to metrics of microstructural injury on diffusion tensor imaging. Biomarker levels at ∼8 months predicted white matter volume loss at >5 years, and annualized brain volume loss between ∼8 months and 5 years. Patients who worsened functionally between ∼8 months and >5 years showed higher than predicted brain age and elevated neurofilament light levels. GFAP and neurofilament light levels can remain elevated months to years after TBI, and show distinct temporal profiles. These elevations correlate closely with microstructural injury in both grey and white matter on contemporaneous quantitative diffusion tensor imaging. Neurofilament light elevations at ∼8 months may predict ongoing white matter and brain volume loss over >5 years of follow-up. If confirmed, these findings suggest that blood biomarker levels at late time points could be used to identify TBI survivors who are at high risk of progressive neurological damage.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Substância Branca , Biomarcadores , Lesões Encefálicas/complicações , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Progressão da Doença , Proteína Glial Fibrilar Ácida/metabolismo , Humanos
5.
Brain ; 145(11): 4097-4107, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36065116

RESUMO

COVID-19 is associated with neurological complications including stroke, delirium and encephalitis. Furthermore, a post-viral syndrome dominated by neuropsychiatric symptoms is common, and is seemingly unrelated to COVID-19 severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host inflammatory responses appear to be a key driver of COVID-19 severity. We investigated the dynamics of, and relationship between, serum markers of brain injury [neurofilament light (NfL), glial fibrillary acidic protein (GFAP) and total tau] and markers of dysregulated host response (autoantibody production and cytokine profiles) in 175 patients admitted with COVID-19 and 45 patients with influenza. During hospitalization, sera from patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity-dependent manner, with evidence of ongoing active brain injury at follow-up 4 months later. These biomarkers were associated with elevations of pro-inflammatory cytokines and the presence of autoantibodies to a large number of different antigens. Autoantibodies were commonly seen against lung surfactant proteins but also brain proteins such as myelin associated glycoprotein. Commensurate findings were seen in the influenza cohort. A distinct process characterized by elevation of serum total tau was seen in patients at follow-up, which appeared to be independent of initial disease severity and was not associated with dysregulated immune responses unlike NfL and GFAP. These results demonstrate that brain injury is a common consequence of both COVID-19 and influenza, and is therefore likely to be a feature of severe viral infection more broadly. The brain injury occurs in the context of dysregulation of both innate and adaptive immune responses, with no single pathogenic mechanism clearly responsible.


Assuntos
Lesões Encefálicas , COVID-19 , Influenza Humana , Humanos , Proteínas de Neurofilamentos , COVID-19/complicações , Biomarcadores , Autoanticorpos , Imunidade
6.
Neurocrit Care ; 39(3): 611-617, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37552410

RESUMO

BACKGROUND: Over the past 5 decades, advances in neuroimaging have yielded insights into the pathophysiologic mechanisms that cause disorders of consciousness (DoC) in patients with severe brain injuries. Structural, functional, metabolic, and perfusion imaging studies have revealed specific neuroanatomic regions, such as the brainstem tegmentum, thalamus, posterior cingulate cortex, medial prefrontal cortex, and occipital cortex, where lesions correlate with the current or future state of consciousness. Advanced imaging modalities, such as diffusion tensor imaging, resting-state functional magnetic resonance imaging (fMRI), and task-based fMRI, have been used to improve the accuracy of diagnosis and long-term prognosis, culminating in the endorsement of fMRI for the clinical evaluation of patients with DoC in the 2018 US (task-based fMRI) and 2020 European (task-based and resting-state fMRI) guidelines. As diverse neuroimaging techniques are increasingly used for patients with DoC in research and clinical settings, the need for a standardized approach to reporting results is clear. The success of future multicenter collaborations and international trials fundamentally depends on the implementation of a shared nomenclature and infrastructure. METHODS: To address this need, the Neurocritical Care Society's Curing Coma Campaign convened an international panel of DoC neuroimaging experts to propose common data elements (CDEs) for data collection and reporting in this field. RESULTS: We report the recommendations of this CDE development panel and disseminate CDEs to be used in neuroimaging studies of patients with DoC. CONCLUSIONS: These CDEs will support progress in the field of DoC neuroimaging and facilitate international collaboration.


Assuntos
Estado de Consciência , Imagem de Tensor de Difusão , Humanos , Estado de Consciência/fisiologia , Imagem de Tensor de Difusão/efeitos adversos , Transtornos da Consciência/etiologia , Elementos de Dados Comuns , Neuroimagem/métodos , Imageamento por Ressonância Magnética/métodos
7.
Brain ; 144(11): 3492-3504, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34240124

RESUMO

Metabolic derangements following traumatic brain injury are poorly characterized. In this single-centre observational cohort study we combined 18F-FDG and multi-tracer oxygen-15 PET to comprehensively characterize the extent and spatial pattern of metabolic derangements. Twenty-six patients requiring sedation and ventilation with intracranial pressure monitoring following head injury within a Neurosciences Critical Care Unit, and 47 healthy volunteers were recruited. Eighteen volunteers were excluded for age over 60 years (n = 11), movement-related artefact (n = 3) or physiological instability during imaging (n = 4). We measured cerebral blood flow, blood volume, oxygen extraction fraction, and 18F-FDG transport into the brain (K1) and its phosphorylation (k3). We calculated oxygen metabolism, 18F-FDG influx rate constant (Ki), glucose metabolism and the oxygen/glucose metabolic ratio. Lesion core, penumbra and peri-penumbra, and normal-appearing brain, ischaemic brain volume and k3 hotspot regions were compared with plasma and microdialysis glucose in patients. Twenty-six head injury patients, median age 40 years (22 male, four female) underwent 34 combined 18F-FDG and oxygen-15 PET at early, intermediate, and late time points (within 24 h, Days 2-5, and Days 6-12 post-injury; n = 12, 8, and 14, respectively), and were compared with 20 volunteers, median age 43 years (15 male, five female) who underwent oxygen-15, and nine volunteers, median age 56 years (three male, six female) who underwent 18F-FDG PET. Higher plasma glucose was associated with higher microdialysate glucose. Blood flow and K1 were decreased in the vicinity of lesions, and closely related when blood flow was <25 ml/100 ml/min. Within normal-appearing brain, K1 was maintained despite lower blood flow than volunteers. Glucose utilization was globally reduced in comparison with volunteers (P < 0.001). k3 was variable; highest within lesions with some patients showing increases with blood flow <25 ml/100 ml/min, but falling steeply with blood flow lower than 12 ml/100 ml/min. k3 hotspots were found distant from lesions, with k3 increases associated with lower plasma glucose (Rho -0.33, P < 0.001) and microdialysis glucose (Rho -0.73, P = 0.02). k3 hotspots showed similar K1 and glucose metabolism to volunteers despite lower blood flow and oxygen metabolism (P < 0.001, both comparisons); oxygen extraction fraction increases consistent with ischaemia were uncommon. We show that glucose delivery was dependent on plasma glucose and cerebral blood flow. Overall glucose utilization was low, but regional increases were associated with reductions in glucose availability, blood flow and oxygen metabolism in the absence of ischaemia. Clinical management should optimize blood flow and glucose delivery and could explore the use of alternative energy substrates.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Circulação Cerebrovascular/fisiologia , Glucose/metabolismo , Adulto , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons
8.
Crit Care ; 26(1): 369, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36447266

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) carries prognostic importance after traumatic brain injury (TBI), especially when computed tomography (CT) fails to fully explain the level of unconsciousness. However, in critically ill patients, the risk of deterioration during transfer needs to be balanced against the benefit of detecting prognostically relevant information on MRI. We therefore aimed to assess if day of injury serum protein biomarkers could identify critically ill TBI patients in whom the risks of transfer are compensated by the likelihood of detecting management-altering neuroimaging findings. METHODS: Data were obtained from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. Eligibility criteria included: TBI patients aged ≥ 16 years, Glasgow Coma Score (GCS) < 13 or patient intubated with unrecorded pre-intubation GCS, CT with Marshall score < 3, serum biomarkers (GFAP, NFL, NSE, S100B, Tau, UCH-L1) sampled ≤ 24 h of injury, MRI < 30 days of injury. The degree of axonal injury on MRI was graded using the Adams-Gentry classification. The association between serum concentrations of biomarkers and Adams-Gentry stage was assessed and the optimum threshold concentration identified, assuming different minimum sensitivities for the detection of brainstem injury (Adams-Gentry stage 3). A cost-benefit analysis for the USA and UK health care settings was also performed. RESULTS: Among 65 included patients (30 moderate-severe, 35 unrecorded) axonal injury was detected in 54 (83%) and brainstem involvement in 33 (51%). In patients with moderate-severe TBI, brainstem injury was associated with higher concentrations of NSE, Tau, UCH-L1 and GFAP. If the clinician did not want to miss any brainstem injury, NSE could have avoided MRI transfers in up to 20% of patients. If a 94% sensitivity was accepted considering potential transfer-related complications, GFAP could have avoided 30% of transfers. There was no added net cost, with savings up to £99 (UK) or $612 (US). No associations between proteins and axonal injury were found in intubated patients without a recorded pre-intubation GCS. CONCLUSIONS: Serum protein biomarkers show potential to safely reduce the number of transfers to MRI in critically ill patients with moderate-severe TBI at no added cost.


Assuntos
Lesões Encefálicas Traumáticas , Estado Terminal , Humanos , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Biomarcadores , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X
9.
Emerg Med J ; 39(3): 206-212, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34916280

RESUMO

BACKGROUND: There is substantial interest in blood biomarkers as fast and objective diagnostic tools for traumatic brain injury (TBI) in the acute setting. METHODS: Adult patients (≥18) with TBI of any severity and indications for CT scanning and orthopaedic injury controls were prospectively recruited during 2011-2013 at Turku University Hospital, Finland. The severity of TBI was classified with GCS: GCS 13-15 was classified as mild (mTBI); GCS 9-12 as moderate (moTBI) and GCS 3-8 as severe (sTBI). Serum samples were collected within 24 hours of admission and biomarker levels analysed with high-performance kits. The ability of biomarkers to distinguish between severity of TBI and CT-positive and CT-negative patients was assessed. RESULTS: Among 189 patients recruited, neurofilament light (NF-L) was obtained from 175 patients with TBI and 40 controls. S100 calcium-binding protein B (S100B), heart fatty-acid binding protein (H-FABP) and interleukin-10 (IL-10) were analysed for 184 patients with TBI and 39 controls. There were statistically significant differences between levels of all biomarkers between the severity classes, but none of the biomarkers distinguished patients with moTBI from patients with sTBI. Patients with mTBI discharged from the ED had lower levels of IL-10 (0.26, IQR=0.21, 0.39 pg/mL), H-FABP (4.15, IQR=2.72, 5.83 ng/mL) and NF-L (8.6, IQR=6.35, 15.98 pg/mL) compared with those admitted to the neurosurgical ward, IL-10 (0.55, IQR=0.31, 1.42 pg/mL), H-FABP (6.022, IQR=4.19, 20.72 ng/mL) and NF-L (13.95, IQR=8.33, 19.93 pg/mL). We observed higher levels of H-FABP and NF-L in older patients with mTBI. None of the biomarkers or their combinations was able to distinguish CT-positive (n=36) or CT-negative (n=58) patients with mTBI from controls. CONCLUSIONS: S100B, H-FABP, NF-L and IL-10 levels in patients with mTBI were significantly lower than in patients with moTBI and sTBI but alone or in combination, were unable to distinguish patients with mTBI from orthopaedic controls. This suggests these biomarkers cannot be used alone to diagnose mTBI in trauma patients in the acute setting.


Assuntos
Lesões Encefálicas Traumáticas , Proteína 3 Ligante de Ácido Graxo , Interleucina-10 , Proteínas de Neurofilamentos , Subunidade beta da Proteína Ligante de Cálcio S100 , Adulto , Idoso , Biomarcadores , Lesões Encefálicas Traumáticas/diagnóstico , Humanos
10.
Curr Opin Crit Care ; 27(2): 80-86, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33534257

RESUMO

PURPOSE OF REVIEW: To describe the key features and epidemiology of traumatic brain injury (TBI) and how they may be changing, with an emphasis on how this may affect care in the intensive care unit. RECENT FINDINGS: TBI has been traditionally perceived as occurring mainly in a younger, predominantly male population injured in high velocity motor vehicle crashes or assaults. However, there are an increasing number of patients over 65 years who have sustained a TBI secondary to low velocity falls. Considering the effects of frailty, comorbidities and extracranial injuries is important when making management decisions. Mild TBI comprises a third of those admitted and as a significant proportion may have poor outcomes secondary to their TBI they should be assessed to ensure appropriate follow-up. Multimodal monitoring may offer a way in the future to offer more personalised management to this very complex and heterogeneous patient group. SUMMARY: This review highlights the urgent need to develop more age-inclusive TBI consensus management guidelines aimed at improving short- and long-term outcomes for the large and growing TBI population. Being elderly does not necessarily portend a poor outcome, and more research is needed to better triage, guide management and prognosticate on these patients.


Assuntos
Lesões Encefálicas Traumáticas , Acidentes por Quedas , Idoso , Lesões Encefálicas Traumáticas/epidemiologia , Lesões Encefálicas Traumáticas/terapia , Hospitalização , Humanos , Unidades de Terapia Intensiva , Masculino
11.
Neurocrit Care ; 34(1): 312-324, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32462411

RESUMO

Secondary injuries remain an important cause of the morbidity and mortality associated with traumatic brain injury (TBI). Progression of cerebral contusions occurs in up to 75% of patients with TBI, and this contributes to subsequent clinical deterioration and requirement for surgical intervention. Despite this, the role of early clinical and radiological factors in predicting contusion progression remains relatively poorly defined due to studies investigating progression of all types of hemorrhagic injuries as a combined cohort. In this review, we summarize data from recent studies on factors which predict contusion progression, and the effect of contusion progression on clinical outcomes.


Assuntos
Contusão Encefálica , Lesões Encefálicas Traumáticas , Contusões , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/terapia , Progressão da Doença , Humanos , Radiografia
12.
J Head Trauma Rehabil ; 35(6): E513-E523, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32472833

RESUMO

OBJECTIVE: To determine the effect of extracranial injury (ECI) on 6-month outcome in patients with mild traumatic brain injury (TBI) versus moderate-to-severe TBI. PARTICIPANTS/SETTING: Patients with TBI (n = 135) or isolated orthopedic injury (n = 25) admitted to a UK major trauma center and healthy volunteers (n = 99). DESIGN: Case-control observational study. MAIN MEASURES: Primary outcomes: (a) Glasgow Outcome Scale Extended (GOSE), (b) depression, (c) quality of life (QOL), and (d) cognitive impairment including verbal fluency, episodic memory, short-term recognition memory, working memory, sustained attention, and attentional flexibility. RESULTS: Outcome was influenced by both TBI severity and concomitant ECI. The influence of ECI was restricted to mild TBI; GOSE, QOL, and depression outcomes were significantly poorer following moderate-to-severe TBI than after isolated mild TBI (but not relative to mild TBI plus ECI). Cognitive impairment was driven solely by TBI severity. General health, bodily pain, semantic verbal fluency, spatial recognition memory, working memory span, and attentional flexibility were unaffected by TBI severity and additional ECI. CONCLUSION: The presence of concomitant ECI ought to be considered alongside brain injury severity when characterizing the functional and neurocognitive effects of TBI, with each presenting challenges to recovery.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Cognição , Lesões Encefálicas/complicações , Lesões Encefálicas/diagnóstico , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico , Escala de Resultado de Glasgow , Humanos , Qualidade de Vida , Reino Unido
13.
Neurocrit Care ; 32(2): 373-382, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797278

RESUMO

BACKGROUND: Failure of cerebral autoregulation and progression of intracranial lesion have both been shown to contribute to poor outcome in patients with acute traumatic brain injury (TBI), but the interplay between the two phenomena has not been investigated. Preliminary evidence leads us to hypothesize that brain tissue adjacent to primary injury foci may be more vulnerable to large fluctuations in blood flow in the absence of intact autoregulatory mechanisms. The goal of this study was therefore to assess the influence of cerebrovascular reactivity measures on radiological lesion expansion in a cohort of patients with acute TBI. METHODS: We conducted a retrospective cohort analysis on 50 TBI patients who had undergone high-frequency multimodal intracranial monitoring and for which at least two brain computed tomography (CT) scans had been performed in the acute phase of injury. We first performed univariate analyses on the full cohort to identify non-neurophysiological factors (i.e., initial lesion volume, timing of scan, coagulopathy) associated with traumatic lesion growth in this population. In a subset analysis of 23 patients who had intracranial recording data covering the period between the initial and repeat CT scan, we then correlated changes in serial volumetric lesion measurements with cerebrovascular reactivity metrics derived from the pressure reactivity index (PRx), pulse amplitude index (PAx), and RAC (correlation coefficient between the pulse amplitude of intracranial pressure and cerebral perfusion pressure). Using multivariate methods, these results were subsequently adjusted for the non-neurophysiological confounders identified in the univariate analyses. RESULTS: We observed significant positive linear associations between the degree of cerebrovascular reactivity impairment and progression of pericontusional edema. The strongest correlations were observed between edema progression and the following indices of cerebrovascular reactivity between sequential scans: % time PRx > 0.25 (r = 0.69, p = 0.002) and % time PAx > 0.25 (r = 0.64, p = 0.006). These associations remained significant after adjusting for initial lesion volume and mean cerebral perfusion pressure. In contrast, progression of the hemorrhagic core and extra-axial hemorrhage volume did not appear to be strongly influenced by autoregulatory status. CONCLUSIONS: Our preliminary findings suggest a possible link between autoregulatory failure and traumatic edema progression, which warrants re-evaluation in larger-scale prospective studies.


Assuntos
Pressão Arterial/fisiologia , Edema Encefálico/fisiopatologia , Lesões Encefálicas Traumáticas/fisiopatologia , Circulação Cerebrovascular/fisiologia , Hemorragia Intracraniana Traumática/fisiopatologia , Pressão Intracraniana/fisiologia , Adulto , Contusão Encefálica/diagnóstico por imagem , Contusão Encefálica/fisiopatologia , Edema Encefálico/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Progressão da Doença , Feminino , Escala de Coma de Glasgow , Escala de Resultado de Glasgow , Homeostase/fisiologia , Humanos , Unidades de Terapia Intensiva , Hemorragia Intracraniana Traumática/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Adulto Jovem
15.
Emerg Med J ; 36(10): 608-612, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31551302

RESUMO

OBJECTIVES: To describe the incidence of pulmonary embolism (PE) in a critically ill UK major trauma centre (MTC) patient cohort. METHODS: A retrospective, multidataset descriptive study of all trauma patients requiring admission to level 2 or 3 care in the East of England MTC from 1 November 2014 to 1 May 2017. Data describing demographics, the nature and extent of injuries, process of care, timing of PE prophylaxis, tranexamic acid (TXA) administration and CT scanner type were extracted from the Trauma Audit and Research Network database and hospital electronic records. PE presentation was categorised as immediate (diagnosed on initial trauma scan), early (within 72 hours of admission but not present initially) and late (diagnosed after 72 hours). RESULTS: Of the 2746 trauma patients, 1039 were identified as being admitted to level 2 or 3 care. Forty-eight patients (4.6%) were diagnosed with PE during admission with 14 immediate PEs (1.3%). Of 32.1% patients given TXA, 6.3% developed PE compared with 3.8% without TXA (p=0.08). CONCLUSION: This is the largest study of the incidence of PE in UK MTC patients and describes the greatest number of immediate PEs in a civilian complex trauma population to date. Immediate PEs are a rare phenomenon whose clinical importance remains unclear. Tranexamic acid was not significantly associated with an increase in PE in this population following its introduction into the UK trauma care system.


Assuntos
Traumatismo Múltiplo/complicações , Embolia Pulmonar/epidemiologia , Centros de Traumatologia/estatística & dados numéricos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Conjuntos de Dados como Assunto , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Embolia Pulmonar/etiologia , Estudos Retrospectivos , Fatores de Tempo , Reino Unido/epidemiologia , Adulto Jovem
18.
EBioMedicine ; 107: 105298, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39191173

RESUMO

BACKGROUND: Traumatic brain injury is conventionally categorised as mild, moderate, or severe on the Glasgow Coma Scale (GCS). Recently developed biomarkers can provide more objective and nuanced measures of the extent of brain injury. METHODS: Exposure-response relationships were investigated in 2479 patients aged ≥16 enrolled in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) prospective observational cohort study. Neurofilament protein-light (NFL), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), and glial fibrillary acidic protein (GFAP) were assayed from serum sampled in the first 24 h; concentrations were divided into quintiles within GCS severity groups. Relationships with the Glasgow Outcome Scale-Extended were examined using modified Poisson regression including age, sex, major extracranial injury, time to sample, and log biomarker concentration as covariates. FINDINGS: Within severity groups there were associations between biomarkers and outcomes after adjustment for covariates: GCS 13-15 and negative CT imaging (relative risks [RRs] from 1.28 to 3.72), GCS 13-15 and positive CT (1.21-2.81), GCS 9-12 (1.16-2.02), GCS 3-8 (1.09-1.94). RRs were associated with clinically important differences in expectations of prognosis. In patients with GCS 3 (RRs 1.51-1.80) percentages of unfavourable outcome were 37-51% in the lowest quintiles of biomarker levels and reached 90-94% in the highest quintiles. Similarly, for GCS 15 (RRs 1.83-3.79), the percentages were 2-4% and 19-28% in the lowest and highest biomarker quintiles, respectively. INTERPRETATION: Conventional TBI severity classification is inadequate and underestimates heterogeneity of brain injury and associated outcomes. The adoption of circulating biomarkers can add to clinical assessment of injury severity. FUNDING: European Union 7th Framework program (EC grant 602150), Hannelore Kohl Stiftung, One Mind, Integra LifeSciences, Neuro-Trauma Sciences, NIHR Rosetrees Trust.


Assuntos
Biomarcadores , Lesões Encefálicas Traumáticas , Humanos , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/diagnóstico , Biomarcadores/sangue , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Ubiquitina Tiolesterase/sangue , Escala de Coma de Glasgow , Proteína Glial Fibrilar Ácida/sangue , Prognóstico , Idoso , Índice de Gravidade de Doença , Estudos Prospectivos , Proteínas de Neurofilamentos/sangue , Adolescente , Adulto Jovem
19.
iScience ; 27(9): 110654, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39252979

RESUMO

Acute traumatic brain injury (TBI) is associated with substantial abnormalities in lipid biology, including changes in the structural lipids that are present in the myelin in the brain. We investigated the relationship between traumatic microstructural changes in white matter from magnetic resonance imaging (MRI) and quantitative lipidomic changes from blood serum. The study cohort included 103 patients from the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study. Diffusion tensor fitting generated fractional anisotropy (FA) and mean diffusivity (MD) maps for the MRI scans while ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry was applied to analyze the lipidome. Increasing severity of TBI was associated with higher MD and lower FA values, which scaled with different lipidomic signatures. There appears to be consistent patterns of lipid changes associating with the specific microstructure changes in the CNS white matter, but also regional specificity, suggesting that blood-based lipidomics may provide an insight into the underlying pathophysiology of TBI.

20.
EBioMedicine ; 99: 104915, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113760

RESUMO

BACKGROUND: Degenerative cervical myelopathy (DCM) is the most common cause of adult spinal cord dysfunction globally. Associated neurological symptoms and signs have historically been explained by pathobiology within the cervical spine. However, recent advances in imaging have shed light on numerous brain changes in patients with DCM, and it is hypothesised that these changes contribute to DCM pathogenesis. The aetiology, significance, and distribution of these supraspinal changes is currently unknown. The objective was therefore to synthesise all current evidence on brain changes in DCM. METHODS: A systematic review was performed. Cross-sectional and longitudinal studies with magnetic resonance imaging on a cohort of patients with DCM were eligible. PRISMA guidelines were followed. MEDLINE and Embase were searched to 28th August 2023. Duplicate title/abstract screening, data extraction and risk of bias assessments were conducted. A qualitative synthesis of the literature is presented as per the Synthesis Without Meta-Analysis (SWiM) reporting guideline. The review was registered with PROSPERO (ID: CRD42022298538). FINDINGS: Of the 2014 studies that were screened, 47 studies were identified that used MRI to investigate brain changes in DCM. In total, 1500 patients with DCM were included in the synthesis, with a mean age of 53 years. Brain alterations on MRI were associated with DCM both before and after surgery, particularly within the sensorimotor network, visual network, default mode network, thalamus and cerebellum. Associations were commonly reported between brain MRI alterations and clinical measures, particularly the Japanese orthopaedic association (JOA) score. Risk of bias of included studies was low to moderate. INTERPRETATION: The rapidly expanding literature provides mounting evidence for brain changes in DCM. We have identified key structures and pathways that are altered, although there remains uncertainty regarding the directionality and clinical significance of these changes. Future studies with greater sample sizes, more detailed phenotyping and longer follow-up are now needed. FUNDING: ODM is supported by an Academic Clinical Fellowship at the University of Cambridge. BMD is supported by an NIHR Clinical Doctoral Fellowship at the University of Cambridge (NIHR300696). VFJN is supported by an NIHR Rosetrees Trust Advanced Fellowship (NIHR302544). This project was supported by an award from the Rosetrees Foundation with the Storygate Trust (A2844).


Assuntos
Doenças da Medula Espinal , Humanos , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos Transversais , Imageamento por Ressonância Magnética , Doenças da Medula Espinal/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA