Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain ; 147(2): 521-531, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37796038

RESUMO

In patients with drug-resistant epilepsy, electrical stimulation of the brain in response to epileptiform activity can make seizures less frequent and debilitating. This therapy, known as closed-loop responsive neurostimulation (RNS), aims to directly halt seizure activity via targeted stimulation of a burgeoning seizure. Rather than immediately stopping seizures as they start, many RNS implants produce slower, long-lasting changes in brain dynamics that better predict clinical outcomes. Here we hypothesize that stimulation during brain states with less epileptiform activity drives long-term changes that restore healthy brain networks. To test this, we quantified stimulation episodes during low- and high-risk brain states-that is, stimulation during periods with a lower or higher risk of generating epileptiform activity-in a cohort of 40 patients treated with RNS. More frequent stimulation in tonic low-risk states and out of rhythmic high-risk states predicted seizure reduction. Additionally, stimulation events were more likely to be phase-locked to prolonged episodes of abnormal activity for intermediate and poor responders when compared to super-responders, consistent with the hypothesis that improved outcomes are driven by stimulation during low-risk states. These results support the hypothesis that stimulation during low-risk periods might underlie the mechanisms of RNS, suggesting a relationship between temporal patterns of neuromodulation and plasticity that facilitates long-term seizure reduction.


Assuntos
Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Estimulação Encefálica Profunda/métodos , Epilepsia/terapia , Convulsões/terapia , Encéfalo , Epilepsia Resistente a Medicamentos/terapia
2.
Epilepsia ; 65(5): 1360-1373, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38517356

RESUMO

OBJECTIVES: Responsive neurostimulation (RNS) is an established therapy for drug-resistant epilepsy that delivers direct electrical brain stimulation in response to detected epileptiform activity. However, despite an overall reduction in seizure frequency, clinical outcomes are variable, and few patients become seizure-free. The aim of this retrospective study was to evaluate aperiodic electrophysiological activity, associated with excitation/inhibition balance, as a novel electrographic biomarker of seizure reduction to aid early prognostication of the clinical response to RNS. METHODS: We identified patients with intractable mesial temporal lobe epilepsy who were implanted with the RNS System between 2015 and 2021 at the University of Utah. We parameterized the neural power spectra from intracranial RNS System recordings during the first 3 months following implantation into aperiodic and periodic components. We then correlated circadian changes in aperiodic and periodic parameters of baseline neural recordings with seizure reduction at the most recent follow-up. RESULTS: Seizure reduction was correlated significantly with a patient's average change in the day/night aperiodic exponent (r = .50, p = .016, n = 23 patients) and oscillatory alpha power (r = .45, p = .042, n = 23 patients) across patients for baseline neural recordings. The aperiodic exponent reached its maximum during nighttime hours (12 a.m. to 6 a.m.) for most responders (i.e., patients with at least a 50% reduction in seizures). SIGNIFICANCE: These findings suggest that circadian modulation of baseline broadband activity is a biomarker of response to RNS early during therapy. This marker has the potential to identify patients who are likely to respond to mesial temporal RNS. Furthermore, we propose that less day/night modulation of the aperiodic exponent may be related to dysfunction in excitation/inhibition balance and its interconnected role in epilepsy, sleep, and memory.


Assuntos
Ritmo Circadiano , Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/terapia , Epilepsia do Lobo Temporal/fisiopatologia , Masculino , Feminino , Adulto , Ritmo Circadiano/fisiologia , Estudos Retrospectivos , Pessoa de Meia-Idade , Epilepsia Resistente a Medicamentos/terapia , Epilepsia Resistente a Medicamentos/fisiopatologia , Convulsões/fisiopatologia , Convulsões/terapia , Estimulação Encefálica Profunda/métodos , Resultado do Tratamento , Adulto Jovem , Eletroencefalografia/métodos
3.
Epilepsia ; 63(8): 2037-2055, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35560062

RESUMO

OBJECTIVE: Responsive neurostimulation is an effective therapy for patients with refractory mesial temporal lobe epilepsy. However, clinical outcomes are variable, few patients become seizure-free, and the optimal stimulation location is currently undefined. The aim of this study was to quantify responsive neurostimulation in the mesial temporal lobe, identify stimulation-dependent networks associated with seizure reduction, and determine if stimulation location or stimulation-dependent networks inform outcomes. METHODS: We modeled patient-specific volumes of tissue activated and created probabilistic stimulation maps of local regions of stimulation across a retrospective cohort of 22 patients with mesial temporal lobe epilepsy. We then mapped the network stimulation effects by seeding tractography from the volume of tissue activated with both patient-specific and normative diffusion-weighted imaging. We identified networks associated with seizure reduction across patients using the patient-specific tractography maps and then predicted seizure reduction across the cohort. RESULTS: Patient-specific stimulation-dependent connectivity was correlated with responsive neurostimulation effectiveness after cross-validation (p = .03); however, normative connectivity derived from healthy subjects was not (p = .44). Increased connectivity from the volume of tissue activated to the medial prefrontal cortex, cingulate cortex, and precuneus was associated with greater seizure reduction. SIGNIFICANCE: Overall, our results suggest that the therapeutic effect of responsive neurostimulation may be mediated by specific networks connected to the volume of tissue activated. In addition, patient-specific tractography was required to identify structural networks correlated with outcomes. It is therefore likely that altered connectivity in patients with epilepsy may be associated with the therapeutic effect and that utilizing patient-specific imaging could be important for future studies. The structural networks identified here may be utilized to target stimulation in the mesial temporal lobe and to improve seizure reduction for patients treated with responsive neurostimulation.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Epilepsia/terapia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/terapia , Giro do Cíngulo , Humanos , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Lobo Temporal
4.
Radiology ; 261(3): 950-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21900623

RESUMO

PURPOSE: To determine whether quantitative computed tomographic (CT) measurements of emphysema and airway dimensions are associated with lung cancer risk in a screening population. MATERIALS AND METHODS: Institutional review board approval and informed consent for the use of deidentified images were obtained. In this retrospective study, CT scans were analyzed from 279 participants in the CT screening arm of the National Lung Screening Trial who were diagnosed with lung cancer and 279 participants who were not diagnosed with lung cancer after a median follow-up period of 6.6 years. Quantitative CT measurements of emphysema and right upper lobe apical segmental and subsegmental airway dimensions, and multiple patient history-related variables, were compared between the two groups. Significant variables were tested in multivariate models for association with lung cancer by using multiple logistic regression. RESULTS: The emphysema index of percentage upper lung volume less than -950 HU had the strongest association with lung cancer (mean, 10.7% [standard deviation, 13.5] in patients vs 7.2% [standard deviation, 10.4] in control subjects; P < .001), but the relationship was weak (R(2) = 0.015, P < .001, c = 0.57). No CT measures of emphysema had an association with lung cancer independent of the patient medical history variables. Airway dimensions were not associated with lung cancer. CONCLUSION: Quantitative CT measurements of emphysema but not airway dimensions were only weakly associated with lung cancer, demonstrating no potential practical value for clinical risk stratification.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Enfisema Pulmonar/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Idoso , Feminino , Humanos , Modelos Logísticos , Neoplasias Pulmonares/epidemiologia , Masculino , Pessoa de Meia-Idade , Enfisema Pulmonar/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Fumar/efeitos adversos , Estados Unidos/epidemiologia
5.
Front Neurol ; 12: 728484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733229

RESUMO

Epitel has developed Epilog, a miniature, wireless, wearable electroencephalography (EEG) sensor. Four Epilog sensors are combined as part of Epitel's Remote EEG Monitoring platform (REMI) to create 10 channels of EEG for remote patient monitoring. REMI is designed to provide comprehensive spatial EEG recordings that can be administered by non-specialized medical personnel in any medical center. The purpose of this study was to determine how accurate epileptologists are at remotely reviewing Epilog sensor EEG in the 10-channel "REMI montage," with and without seizure detection support software. Three board certified epileptologists reviewed the REMI montage from 20 subjects who wore four Epilog sensors for up to 5 days alongside traditional video-EEG in the EMU, 10 of whom experienced a total of 24 focal-onset electrographic seizures and 10 of whom experienced no seizures or epileptiform activity. Epileptologists randomly reviewed the same datasets with and without clinical decision support annotations from an automated seizure detection algorithm tuned to be highly sensitive. Blinded consensus review of unannotated Epilog EEG in the REMI montage detected people who were experiencing electrographic seizure activity with 90% sensitivity and 90% specificity. Consensus detection of individual focal onset seizures resulted in a mean sensitivity of 61%, precision of 80%, and false detection rate (FDR) of 0.002 false positives per hour (FP/h) of data. With algorithm seizure detection annotations, the consensus review mean sensitivity improved to 68% with a slight increase in FDR (0.005 FP/h). As seizure detection software, the automated algorithm detected people who were experiencing electrographic seizure activity with 100% sensitivity and 70% specificity, and detected individual focal onset seizures with a mean sensitivity of 90% and mean false alarm rate of 0.087 FP/h. This is the first study showing epileptologists' ability to blindly review EEG from four Epilog sensors in the REMI montage, and the results demonstrate the clinical potential to accurately identify patients experiencing electrographic seizures. Additionally, the automated algorithm shows promise as clinical decision support software to detect discrete electrographic seizures in individual records as accurately as FDA-cleared predicates.

6.
PeerJ ; 1: e195, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24255811

RESUMO

Background. This study's goal was to provide dose-response data for a dopamine agonist in the baboon using standard methods (replicate measurements at each dose, across a range of doses), as a standard against which to subsequently validate a novel pharmacological MRI (phMRI) method. Dependent variables were functional MRI (fMRI) data from brain regions selected a priori, and systemic prolactin release. Necessary first steps included estimating the magnitude and time course of prolactin response to anesthesia alone and to various doses of agonist. These first steps ("time course studies") were performed with three agonists, and the results were used to select promising agonists and to guide design details for the single-dose studies needed to generate dose-response curves. Methods. We studied 6 male baboons (Papio anubis) under low-dose isoflurane anesthesia after i.m. ketamine. Time course studies charted the changes in plasma prolactin levels over time after anesthesia alone or after an intravenous (i.v.) dose of the dopamine D 1-like agonists SKF82958 and SKF38393 or the D 2-like agonist pramipexole. In the single-dose dopamine agonist studies, one dose of SKF38393 (ranging from 0.0928-9.28 mg/kg, N = 5 animals) or pramipexole (0.00928-0.2 mg/kg, N = 1) was given i.v. during a 40-min blood oxygen level dependent (BOLD) fMRI session, to determine BOLD and plasma prolactin responses to different drug concentrations. BOLD response was quantified as the area under the time-signal curve for the first 15 min after the start of the drug infusion, compared to the linearly predicted signal from the baseline data before drug. The ED50 (estimated dose that produces 50% of the maximal possible response to drug) for SKF38393 was calculated for the serum prolactin response and for phMRI responses in hypothalamus, pituitary, striatum and midbrain. Results. Prolactin rose 2.4- to 12-fold with anesthesia alone, peaking around 50-90 min after ketamine administration and gradually tapering off but still remaining higher than baseline on isoflurane 3-5 h after ketamine. Baseline prolactin level increased with age. SKF82958 0.1 mg/kg i.v. produced no noticeable change in plasma prolactin concentration. SKF38393 produced a substantial increase in prolactin release that peaked at around 20-30 min and declined to pre-drug levels in about an hour. Pramipexole quickly reduced prolactin levels below baseline, reaching a nadir 2-3 h after infusion. SKF38393 produced clear, dose-responsive BOLD signal changes, and across the four regions, ED50 was estimated at 2.6-8.1 mg/kg. Conclusions. In the baboon, the dopamine D 1 receptor agonist SKF38393 produces clear plasma prolactin and phMRI dose-response curves. Variability in age and a modest sample size limit the precision of the conclusions.

7.
Nat Genet ; 40(11): 1375-83, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18953339

RESUMO

At present, transgenes in Caenorhabditis elegans are generated by injecting DNA into the germline. The DNA assembles into a semistable extrachromosomal array composed of many copies of injected DNA. These transgenes are typically overexpressed in somatic cells and silenced in the germline. We have developed a method that inserts a single copy of a transgene into a defined site. Mobilization of a Mos1 transposon generates a double-strand break in noncoding DNA. The break is repaired by copying DNA from an extrachromosomal template into the chromosomal site. Homozygous single-copy insertions can be obtained in less than 2 weeks by injecting approximately 20 worms. We have successfully inserted transgenes as long as 9 kb and verified that single copies are inserted at the targeted site. Single-copy transgenes are expressed at endogenous levels and can be expressed in the female and male germlines.


Assuntos
Caenorhabditis elegans/genética , Dosagem de Genes , Mutagênese Insercional/métodos , Transgenes/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/citologia , Elementos de DNA Transponíveis/genética , Feminino , Células Germinativas , Proteínas de Fluorescência Verde/metabolismo , Injeções , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA