Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 29(14): 2379-2394, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32588886

RESUMO

Ageing is the major risk factor for Alzheimer's disease (AD), a condition involving brain hypoxia. The majority of early-onset familial AD (EOfAD) cases involve dominant mutations in the gene PSEN1. PSEN1 null mutations do not cause EOfAD. We exploited putative hypomorphic and EOfAD-like mutations in the zebrafish psen1 gene to explore the effects of age and genotype on brain responses to acute hypoxia. Both mutations accelerate age-dependent changes in hypoxia-sensitive gene expression supporting that ageing is necessary, but insufficient, for AD occurrence. Curiously, the responses to acute hypoxia become inverted in extremely aged fish. This is associated with an apparent inability to upregulate glycolysis. Wild-type PSEN1 allele expression is reduced in post-mortem brains of human EOfAD mutation carriers (and extremely aged fish), possibly contributing to EOfAD pathogenesis. We also observed that age-dependent loss of HIF1 stabilization under hypoxia is a phenomenon conserved across vertebrate classes.


Assuntos
Envelhecimento/genética , Doença de Alzheimer/genética , Encéfalo/metabolismo , Presenilina-1/genética , Proteínas de Peixe-Zebra/genética , Envelhecimento/patologia , Alelos , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Hipóxia Celular/genética , Modelos Animais de Doenças , Genótipo , Humanos , Mutação/genética , Presenilina-2/genética , Peixe-Zebra/genética
2.
BMC Genomics ; 22(1): 211, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33761877

RESUMO

BACKGROUND: Early-onset familial Alzheimer's disease (EOfAD) is promoted by dominant mutations, enabling the study of Alzheimer's disease (AD) pathogenic mechanisms through generation of EOfAD-like mutations in animal models. In a previous study, we generated an EOfAD-like mutation, psen1Q96_K97del, in zebrafish and performed transcriptome analysis comparing entire brains from 6-month-old wild type and heterozygous mutant fish. We identified predicted effects on mitochondrial function and endolysosomal acidification. Here we aimed to determine whether similar effects occur in 7 day post fertilization (dpf) zebrafish larvae that might be exploited in screening of chemical libraries to find ameliorative drugs. RESULTS: We generated clutches of wild type and heterozygous psen1Q96_K97del 7 dpf larvae using a paired-mating strategy to reduce extraneous genetic variation before performing a comparative transcriptome analysis. We identified 228 differentially expressed genes and performed various bioinformatics analyses to predict cellular functions. CONCLUSIONS: Our analyses predicted a significant effect on oxidative phosphorylation, consistent with our earlier observations of predicted effects on ATP synthesis in adult heterozygous psen1Q96_K97del brains. The dysregulation of minichromosome maintenance protein complex (MCM) genes strongly contributed to predicted effects on DNA replication and the cell cycle and may explain earlier observations of genome instability due to PSEN1 mutation. The upregulation of crystallin gene expression may be a response to defective activity of mutant Psen1 protein in endolysosomal acidification. Genes related to extracellular matrix (ECM) were downregulated, consistent with previous studies of EOfAD mutant iPSC neurons and postmortem late onset AD brains. Also, changes in expression of genes controlling iron ion transport were observed without identifiable changes in the prevalence of transcripts containing iron responsive elements (IREs) in their 3' untranslated regions (UTRs). These changes may, therefore, predispose to the apparent iron dyshomeostasis previously observed in 6-month-old heterozygous psen1Q96_K97del EOfAD-like mutant brains.


Assuntos
Doença de Alzheimer , Animais , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Homeostase , Ferro , Larva/metabolismo , Mutação , Fosforilação Oxidativa , Presenilina-1/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Hum Mol Genet ; 24(13): 3662-78, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25814654

RESUMO

The PRESENILIN1 and PRESENILIN2 genes encode structurally related proteases essential for γ-secretase activity. Of nearly 200 PRESENILIN mutations causing early onset, familial Alzheimer's disease (FAD) only the K115Efx10 mutation of PSEN2 causes truncation of the open reading frame. If translated, the truncated product would resemble a naturally occurring isoform of PSEN2 named PS2V that is induced by hypoxia and found at elevated levels in late onset Alzheimer's disease (AD) brains. The function of PS2V is largely unexplored. We show that zebrafish possess a PS2V-like isoform, PS1IV, produced from the fish's PSEN1 rather than PSEN2 orthologous gene. The molecular mechanism controlling formation of PS2V/PS1IV was probably present in the ancient common ancestor of the PSEN1 and PSEN2 genes. Human PS2V and zebrafish PS1IV have highly divergent structures but conserved abilities to stimulate γ-secretase activity and to suppress the unfolded protein response (UPR) under hypoxia. The putative protein truncation caused by K115Efx10 resembles PS2V in its ability to increase γ-secretase activity and suppress the UPR. This supports increased Aß levels as a common link between K115Efx10 early onset AD and sporadic, late onset AD. The ability of mutant variants of PS2V to stimulate γ-secretase activity partially correlates with their ability to suppress the UPR. The cytosolic, transmembrane and luminal domains of PS2V are all critical to its γ-secretase and UPR-suppression activities. Our data support a model in which chronic hypoxia in aged brains promotes excessive Notch signalling and accumulation of Aß that contribute to AD pathogenesis.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Presenilina-1/metabolismo , Presenilina-2/metabolismo , Resposta a Proteínas não Dobradas , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Evolução Biológica , Feminino , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Masculino , Proteínas de Membrana/genética , Peptídeos/genética , Presenilina-1/genética , Presenilina-2/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
4.
Hum Mol Genet ; 23(3): 602-17, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24101600

RESUMO

PRESENILIN1 (PSEN1) is the major locus for mutations causing familial Alzheimer's disease (FAD) and is also mutated in Pick disease of brain, familial acne inversa and dilated cardiomyopathy. It is a critical facilitator of Notch signalling and many other signalling pathways and protein cleavage events including production of the Amyloidß (Aß) peptide from the AMYLOID BETA A4 PRECURSOR PROTEIN (APP). We previously reported that interference with splicing of transcripts of the zebrafish orthologue of PSEN1 creates dominant negative effects on Notch signalling. Here, we extend this work to show that various truncations of human PSEN1 (or zebrafish Psen1) protein have starkly differential effects on Notch signalling and cleavage of zebrafish Appa (a paralogue of human APP). Different truncations can suppress or stimulate Notch signalling but not Appa cleavage and vice versa. The G183V mutation possibly causing Pick disease causes production of aberrant transcripts truncating the open reading frame after exon 5 sequence. We show that the truncated protein potentially translated from these transcripts avidly incorporates into very stable Psen1-dependent higher molecular weight complexes and suppresses cleavage of Appa but not Notch signalling. In contrast, the truncated protein potentially produced by the P242LfsX11 acne inversa mutation has no effect on Appa cleavage but, unexpectedly, enhances Notch signalling. Our results suggest novel hypotheses for the pathological mechanisms underlying these diseases and illustrate the importance of investigating the function of dominant mutations at physiologically relevant expression levels and in the normally heterozygous state in which they cause human disease rather than in isolation from healthy alleles.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/metabolismo , Receptores Notch/metabolismo , Sequência de Aminoácidos , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Embrião não Mamífero , Éxons , Células HEK293 , Hidradenite Supurativa/genética , Humanos , Membranas Intracelulares/metabolismo , Camundongos , Dados de Sequência Molecular , Peso Molecular , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doença de Pick/genética , Presenilina-1/genética , Presenilina-2/genética , Presenilina-2/metabolismo , Receptores Notch/genética , Transdução de Sinais , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
Exp Cell Res ; 328(1): 228-237, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25051050

RESUMO

Autophagy is the principle pathway within cells involved in clearing damaged proteins and organelles. Therefore autophagy is necessary to maintain the turnover balance of peptides and homoeostasis. Autophagy occurs at basal levels under normal conditions but can be upregulated by chemical inducers or stress conditions. The zebrafish (Danio rerio) serves as a versatile tool to understand the functions of genes implicated in autophagy. We report the identification of the zebrafish orthologues of mammalian genes MAP1LC3A (map1lc3a) and MAP1LC3B (map1lc3b) by phylogenetic and conserved synteny analysis and we examine their expression during embryonic development. The zebrafish map1lc3a and map1lc3b genes both show maternally contributed transcripts in early embryogenesis. However, levels of map1lc3a transcript steadily increase until at least 120h post-fertilisation while the levels of map1lc3b show a more variable pattern across developmental time. We have also validated the LC3I ratio/LC3I immunoblot autophagy assay in the presence of chloroquine (a lysosomal proteolysis inhibitor). We found that the LC3II/LC3I ratio is significantly increased in the presence of sodium azide with chloroquine supporting that hypoxia induces autophagy in zebrafish. This was supported by our qPCR assay that showed increased map1lc3a transcript levels in the presence of sodium azide. In contrast, levels of map1lc3b transcripts were reduced in the presence of rapamycin but the decrease in the presence of sodium azide did not reach statistical significance. Our study supports the use of zebrafish for analysing the interplay between hypoxia, development and autophagy.


Assuntos
Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Autofagia/efeitos dos fármacos , Western Blotting , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Imunossupressores/farmacologia , Hibridização In Situ , Proteínas Associadas aos Microtúbulos/genética , Filogenia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirolimo/farmacologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
6.
Genes (Basel) ; 14(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37628618

RESUMO

Aicardi Syndrome (AIC) is a rare neurodevelopmental disorder recognized by the classical triad of agenesis of the corpus callosum, chorioretinal lacunae and infantile epileptic spasms syndrome. The diagnostic criteria of AIC were revised in 2005 to include additional phenotypes that are frequently observed in this patient group. AIC has been traditionally considered as X-linked and male lethal because it almost exclusively affects females. Despite numerous genetic and genomic investigations on AIC, a unifying X-linked cause has not been identified. Here, we performed exome and genome sequencing of 10 females with AIC or suspected AIC based on current criteria. We identified a unique de novo variant, each in different genes: KMT2B, SLF1, SMARCB1, SZT2 and WNT8B, in five of these females. Notably, genomic analyses of coding and non-coding single nucleotide variants, short tandem repeats and structural variation highlighted a distinct lack of X-linked candidate genes. We assessed the likely pathogenicity of our candidate autosomal variants using the TOPflash assay for WNT8B and morpholino knockdown in zebrafish (Danio rerio) embryos for other candidates. We show expression of Wnt8b and Slf1 are restricted to clinically relevant cortical tissues during mouse development. Our findings suggest that AIC is genetically heterogeneous with implicated genes converging on molecular pathways central to cortical development.


Assuntos
Síndrome de Aicardi , Masculino , Feminino , Animais , Camundongos , Síndrome de Aicardi/genética , Peixe-Zebra/genética , Mapeamento Cromossômico , Genes Ligados ao Cromossomo X/genética , Bioensaio
7.
Biochim Biophys Acta ; 1812(3): 346-52, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20920580

RESUMO

Alzheimer's disease is the most prevalent form of neurodegenerative disease. Despite many years of intensive research our understanding of the molecular events leading to this pathology is far from complete. No effective treatments have been defined and questions surround the validity and utility of existing animal models. The zebrafish (and, in particular, its embryos) is a malleable and accessible model possessing a vertebrate neural structure and genome. Zebrafish genes orthologous to those mutated in human familial Alzheimer's disease have been defined. Work in zebrafish has permitted discovery of unique characteristics of these genes that would have been difficult to observe with other models. In this brief review we give an overview of Alzheimer's disease and transgenic animal models before examining the current contribution of zebrafish to this research area. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.


Assuntos
Doença de Alzheimer/genética , Modelos Animais de Doenças , Peixe-Zebra/genética , Doença de Alzheimer/patologia , Animais , Humanos
8.
Exp Cell Res ; 317(11): 1503-12, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21530505

RESUMO

Zebrafish embryos have evolved to cope with hypoxia during development. This includes the ability to completely suspend embryo development for extended periods until normoxia is restored. However, only a limited number of studies have examined the gene regulatory responses of zebrafish embryos to hypoxia. The High Mobility Group A1 protein encoded by the mammalian gene HMGA1 is widely expressed during embryo development but not in adults. Its expression can be induced in adult neurons by hypoxia/oxidative stress and it is commonly reactivated in many types of cancer. We report the identification by phylogenetic and conserved synteny analyses of an HMGA1 orthologue in zebrafish, hmga1 (hmg-i/y) and analysis of sodium azide as a chemical agent for inducing hypoxia-like responses in zebrafish embryos including temporary suspension of development ("suspended animation"). Evidence was only found for the existence of the "a" isoform of HMGA1 in fish. The "b" and "c" isoforms were not detected. We show that zebrafish hmga1 is expressed in a manner similar to in mammals including its induction by hypoxia during hatching stage and in adult zebrafish brain. However, earlier during development, hypoxia causes a decrease in hmga1 transcript levels. By analysis of conservation of the HMGA1a isoform binding site in zebrafish psen2 gene transcripts, we predict that a zebrafish equivalent of the PS2V isoform of human PSEN2 is not formed and we support this by RT-PCR analyses. Thus, analysis of hmga1 function in zebrafish embryogenesis may be valuable for understanding its wider role in vertebrate development, cancer and cellular responses to hypoxia but not for analysis of the action of HMGA1 in PS2V formation.


Assuntos
Evolução Biológica , Embrião não Mamífero/metabolismo , Proteína HMGA1a/metabolismo , Hipóxia , Oxigênio/metabolismo , Peixe-Zebra/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Embrião não Mamífero/citologia , Proteína HMGA1a/genética , Hibridização In Situ , Dados de Sequência Molecular , Filogenia , Presenilina-2/genética , Presenilina-2/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Dis Model Mech ; 15(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34842276

RESUMO

Energy production is the most fundamentally important cellular activity supporting all other functions, particularly in highly active organs, such as brains. Here, we summarise transcriptome analyses of young adult (pre-disease) brains from a collection of 11 early-onset familial Alzheimer's disease (EOFAD)-like and non-EOFAD-like mutations in three zebrafish genes. The one cellular activity consistently predicted as affected by only the EOFAD-like mutations is oxidative phosphorylation, which produces most of the energy of the brain. All the mutations were predicted to affect protein synthesis. We extended our analysis to knock-in mouse models of APOE alleles and found the same effect for the late onset Alzheimer's disease risk allele ε4. Our results support a common molecular basis for the initiation of the pathological processes leading to both early and late onset forms of Alzheimer's disease, and illustrate the utility of zebrafish and knock-in single EOFAD mutation models for understanding the causes of this disease.


Assuntos
Doença de Alzheimer , Peixe-Zebra , Doença de Alzheimer/metabolismo , Animais , Apolipoproteínas E/genética , Encéfalo/patologia , Metabolismo Energético , Camundongos , Presenilina-1/metabolismo , Transcriptoma/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
10.
J Alzheimers Dis ; 84(4): 1597-1630, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34719489

RESUMO

BACKGROUND: Iron trafficking and accumulation is associated with Alzheimer's disease (AD) pathogenesis. However, the role of iron dyshomeostasis in early disease stages is uncertain. Currently, gene expression changes indicative of iron dyshomeostasis are not well characterized, making it difficult to explore these in existing datasets. OBJECTIVE: To identify sets of genes predicted to contain iron responsive elements (IREs) and use these to explore possible iron dyshomeostasis-associated gene expression responses in AD. METHODS: Comprehensive sets of genes containing predicted IRE or IRE-like motifs in their 3' or 5' untranslated regions (UTRs) were identified in human, mouse, and zebrafish reference transcriptomes. Further analyses focusing on these genes were applied to a range of cultured cell, human, mouse, and zebrafish gene expression datasets. RESULTS: IRE gene sets are sufficiently sensitive to distinguish not only between iron overload and deficiency in cultured cells, but also between AD and other pathological brain conditions. Notably, changes in IRE transcript abundance are among the earliest observable changes in zebrafish familial AD (fAD)-like brains, preceding other AD-typical pathologies such as inflammatory changes. Unexpectedly, while some IREs in the 3' untranslated regions of transcripts show significantly increased stability under iron deficiency in line with current assumptions, many such transcripts instead display decreased stability, indicating that this is not a generalizable paradigm. CONCLUSION: Our results reveal IRE gene expression changes as early markers of the pathogenic process in fAD and are consistent with iron dyshomeostasis as an important driver of this disease. Our work demonstrates how differences in the stability of IRE-containing transcripts can be used to explore and compare iron dyshomeostasis-associated gene expression responses across different species, tissues, and conditions.


Assuntos
Doença de Alzheimer/genética , Expressão Gênica , Deficiências de Ferro , Regiões 3' não Traduzidas/genética , Animais , Encéfalo/patologia , Células Cultivadas , Humanos , Camundongos , Transcriptoma/genética , Peixe-Zebra/genética
11.
BMC Res Notes ; 14(1): 460, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930423

RESUMO

OBJECTIVE: NGFR/p75NTR and NRADD/NRH proteins are closely related structurally and are encoded by genes that arose from a duplication event early in vertebrate evolution. The transmembrane domain (TMD) of NGFR is cleaved by γ-secretase but there is conflicting data around the susceptibility to γ-secretase cleavage of NRADD proteins. If NGFR and NRADD show differential susceptibility to γ-secretase, then they can be used to dissect the structural constraints determining substrate susceptibility. We sought to test this differential susceptibility. RESULTS: We developed labelled, lumenally-truncated forms of zebrafish Ngfrb and Nradd and a chimeric protein in which the TMD of Nradd was replaced with the TMD of Ngfrb. We expressed these in zebrafish embryos to test their susceptibility to γ-secretase cleavage by monitoring their stability using western immunoblotting. Inhibition of γ-secretase activity using DAPT increased the stability of only the Ngfrb construct. Our results support that only NGFR is cleaved by γ-secretase. Either NGFR evolved γ-secretase-susceptibility since its creation by gene duplication, or NRADD evolved to be refractory to γ-secretase. Protein structure outside of the TMD of NGFR is likely required for susceptibility to γ-secretase.


Assuntos
Secretases da Proteína Precursora do Amiloide , Proteínas Reguladoras de Apoptose/genética , Receptor de Fator de Crescimento Neural/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra , Secretases da Proteína Precursora do Amiloide/genética , Animais , Peixe-Zebra/genética
12.
J Alzheimers Dis ; 82(1): 327-347, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34024832

RESUMO

BACKGROUND: The most common cause of early-onset familial Alzheimer's disease (EOfAD) is mutations in PRESENILIN 1 (PSEN1) allowing production of mRNAs encoding full-length, but mutant, proteins. In contrast, a single known frameshift mutation in PSEN1 causes familial acne inversa (fAI) without EOfAD. The molecular consequences of heterozygosity for these mutation types, and how they cause completely different diseases, remains largely unexplored. OBJECTIVE: To analyze brain transcriptomes of young adult zebrafish to identify similarities and differences in the effects of heterozygosity for psen1 mutations causing EOfAD or fAI. METHODS: RNA sequencing was performed on mRNA isolated from the brains of a single family of 6-month-old zebrafish siblings either wild type or possessing a single, heterozygous EOfAD-like or fAI-like mutation in their endogenous psen1 gene. RESULTS: Both mutations downregulate genes encoding ribosomal subunits, and upregulate genes involved in inflammation. Genes involved in energy metabolism appeared significantly affected only by the EOfAD-like mutation, while genes involved in Notch, Wnt and neurotrophin signaling pathways appeared significantly affected only by the fAI-like mutation. However, investigation of direct transcriptional targets of Notch signaling revealed possible increases in γ-secretase activity due to heterozygosity for either psen1 mutation. Transcriptional adaptation due to the fAI-like frameshift mutation was evident. CONCLUSION: We observed both similar and contrasting effects on brain transcriptomes of the heterozygous EOfAD-like and fAI-like mutations. The contrasting effects may illuminate how these mutation types cause distinct diseases.


Assuntos
Doença de Alzheimer/genética , Hidradenite Supurativa/genética , Mutação , Presenilina-1/genética , Transdução de Sinais/genética , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
13.
Mol Brain ; 14(1): 22, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33494778

RESUMO

Previously, we found that brains of adult zebrafish heterozygous for Alzheimer's disease-related mutations in their presenilin 1 gene (psen1, orthologous to human PSEN1) show greater basal expression levels of hypoxia responsive genes relative to their wild type siblings under normoxia, suggesting hypoxic stress. In this study, we investigated whether this might be due to changes in brain vasculature. We generated and compared 3D reconstructions of GFP-labelled blood vessels of the zebrafish forebrain from heterozygous psen1 mutant zebrafish and their wild type siblings. We observed no statistically significant differences in vessel density, surface area, overall mean diameter, overall straightness, or total vessel length normalised to the volume of the telencephalon. Our findings do not support that changes in vascular morphology are responsible for the increased basal expression of hypoxia responsive genes in psen1 heterozygous mutant brains.


Assuntos
Doença de Alzheimer/genética , Encéfalo/irrigação sanguínea , Mutação/genética , Presenilina-1/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Proteínas de Fluorescência Verde/metabolismo , Heterozigoto
14.
J Alzheimers Dis ; 79(3): 1105-1119, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33386808

RESUMO

BACKGROUND: The early cellular stresses leading to Alzheimer's disease (AD) remain poorly understood because we cannot access living, asymptomatic human AD brains for detailed molecular analyses. Sortilin-related receptor 1 (SORL1) encodes a multi-domain receptor protein genetically associated with both rare, early-onset familial AD (EOfAD) and common, sporadic, late-onset AD (LOAD). SORL1 protein has been shown to act in the trafficking of the amyloid ß A4 precursor protein (AßPP) that is proteolysed to form one of the pathological hallmarks of AD, amyloid-ß (Aß) peptide. However, other functions of SORL1 in AD are less well understood. OBJECTIVE: To investigate the effects of heterozygosity for an EOfAD-like mutation in SORL1 on the brain transcriptome of young-adult mutation carriers using zebrafish as a model organism. METHODS: We performed targeted mutagenesis to generate an EOfAD-like mutation in the zebrafish orthologue of SORL1 and performed RNA-sequencing on mRNA isolated from the young adult brains of siblings in a family of fish either wild type (non-mutant) or heterozygous for the EOfAD-like mutation. RESULTS: We identified subtle differences in gene expression indicating changes in mitochondrial and ribosomal function in the mutant fish. These changes appear to be independent of changes in mitochondrial content or the expression of AßPP-related proteins in zebrafish. CONCLUSION: These findings provided evidence supporting that EOfAD mutations in SORL1 affect mitochondrial and ribosomal function and provide the basis for future investigation elucidating the nature of these effects.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Mitocôndrias/metabolismo , Ribossomos/metabolismo , Proteínas de Peixe-Zebra/genética , Doença de Alzheimer/genética , Animais , Western Blotting , Perfilação da Expressão Gênica , Mitocôndrias/genética , Mutação/genética , Reação em Cadeia da Polimerase , Ribossomos/genética , Peixe-Zebra
15.
J Alzheimers Dis Rep ; 5(1): 395-404, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34189411

RESUMO

BACKGROUND: Mutations in PRESENILIN 2 (PSEN2) cause early onset familial Alzheimer's disease (EOfAD) but their mode of action remains elusive. One consistent observation for all PRESENILIN gene mutations causing EOfAD is that a transcript is produced with a reading frame terminated by the normal stop codon-the "reading frame preservation rule". Mutations that do not obey this rule do not cause the disease. The reasons for this are debated. OBJECTIVE: To predict cellular functions affected by heterozygosity for a frameshift, or a reading frame-preserving mutation in zebrafish psen2 using bioinformatic techniques. METHODS: A frameshift mutation (psen2 N140fs ) and a reading frame-preserving (in-frame) mutation (psen2 T141 _ L142delinsMISLISV ) were previously isolated during genome editing directed at the N140 codon of zebrafish psen2 (equivalent to N141 of human PSEN2). We mated a pair of fish heterozygous for each mutation to generate a family of siblings including wild type and heterozygous mutant genotypes. Transcriptomes from young adult (6 months) brains of these genotypes were analyzed. RESULTS: The in-frame mutation uniquely caused subtle, but statistically significant, changes to expression of genes involved in oxidative phosphorylation, long-term potentiation and the cell cycle. The frameshift mutation uniquely affected genes involved in Notch and MAPK signaling, extracellular matrix receptor interactions and focal adhesion. Both mutations affected ribosomal protein gene expression but in opposite directions. CONCLUSION: A frameshift and an in-frame mutation at the same position in zebrafish psen2 cause discrete effects. Changes in oxidative phosphorylation, long-term potentiation and the cell cycle may promote EOfAD pathogenesis in humans.

16.
Front Genet ; 12: 625466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135935

RESUMO

Zebrafish represent a valuable model for investigating the molecular and cellular basis of Fragile X syndrome (FXS). Reduced expression of the zebrafish FMR1 orthologous gene, fmr1, causes developmental and behavioural phenotypes related to FXS. Zebrafish homozygous for the hu2787 non-sense mutation allele of fmr1 are widely used to model FXS, although FXS-relevant phenotypes seen from morpholino antisense oligonucleotide (morpholino) suppression of fmr1 transcript translation were not observed when hu2787 was first described. The subsequent discovery of transcriptional adaptation (a form of genetic compensation), whereby mutations causing non-sense-mediated decay of transcripts can drive compensatory upregulation of homologous transcripts independent of protein feedback loops, suggested an explanation for the differences reported. We examined the whole-embryo transcriptome effects of homozygosity for fmr1 h u2787 at 2 days post fertilisation. We observed statistically significant changes in expression of a number of gene transcripts, but none from genes showing sequence homology to fmr1. Enrichment testing of differentially expressed genes implied effects on lysosome function and glycosphingolipid biosynthesis. The majority of the differentially expressed genes are located, like fmr1, on Chromosome 14. Quantitative PCR tests did not support that this was artefactual due to changes in relative chromosome abundance. Enrichment testing of the "leading edge" differentially expressed genes from Chromosome 14 revealed that their co-location on this chromosome may be associated with roles in brain development and function. The differential expression of functionally related genes due to mutation of fmr1, and located on the same chromosome as fmr1, is consistent with R.A. Fisher's assertion that the selective advantage of co-segregation of particular combinations of alleles of genes will favour, during evolution, chromosomal rearrangements that place them in linkage disequilibrium on the same chromosome. However, we cannot exclude that the apparent differential expression of genes on Chromosome 14 genes was, (if only in part), caused by differences between the expression of alleles of genes unrelated to the effects of the fmr1 h u2787 mutation and made manifest due to the limited, but non-zero, allelic diversity between the genotypes compared.

17.
J Alzheimers Dis ; 80(4): 1479-1489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33720885

RESUMO

BACKGROUND: The PRESENILIN genes (PSEN1, PSEN2) encoding for their respective proteins have critical roles in many aspects of Alzheimer's disease (AD) pathogenesis. The PS2V transcript of PSEN2 encodes a truncated protein and is upregulated in AD brains; however, its relevance to AD and disease progression remains to be determined. OBJECTIVE: Assess transcript levels in postmortem AD and non-AD brain tissue and in lymphocytes collected under the Australian Imaging Biomarker and Lifestyle (AIBL) study. METHODS: Full length PSEN2 and PS2V transcript levels were assessed by quantitative digital PCR in postmortem brain tissue (frontal cortex and hippocampus) from control, AD, frontotemporal dementia (FTD), and Lewy body dementia (LBD). Transcript levels were also assessed in lymphocytes obtained from the Perth subset of the AIBL study (n = 160). Linear regression analysis was used to assess correlations between transcript copy number and brain volume and neocortical amyloid load. RESULTS: PS2V levels increased in AD postmortem brain but PS2V was also present at significant levels in FTD and LBD brains. PS2V transcript was detected in lymphocytes and PS2V/PSEN2 ratios were increased in mild cognitive impairment (p = 0.024) and AD (p = 0.019) groups compared to control group. Increased ratios were significantly correlated with hippocampal volumes only (n = 62, ß= -0.269, p = 0.03). CONCLUSION: Taken together, these results suggest that PS2V may be a marker of overall neurodegeneration.


Assuntos
Doença de Alzheimer/genética , Disfunção Cognitiva/genética , Demência Frontotemporal/genética , Doença por Corpos de Lewy/genética , Presenilina-2/genética , Idoso , Idoso de 80 Anos ou mais , Austrália , Encéfalo/patologia , Progressão da Doença , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Transcrição Gênica
18.
Hum Mol Genet ; 17(3): 402-12, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17981814

RESUMO

Missense mutations in the PRESENILIN1 (PSEN1) gene frequently underlie familial Alzheimer's disease (FAD). Nonsense and most splicing mutations result in the synthesis of truncated peptides, and it has been assumed that truncated PSEN1 protein is functionless so that heterozygotes for these mutations are unaffected. Some FAD mutations affecting PSEN1 mRNA splicing cause loss of exon 8 or 9 sequences while maintaining the reading frame. We attempted to model these exon-loss mutations in zebrafish embryos by injecting morpholino antisense oligonucleotides (morpholinos) directed against splice acceptor sites in zebrafish psen1 transcripts. However, this produced cryptic changes in splicing potentially forming mRNAs encoding truncated presenilin proteins. Aberrant splicing in the region between exons 6 and 8 produces potent dominant negative effects on Psen1 protein activity, including Notch signalling, and causes a hydrocephalus phenotype. Reductions in Psen1 activity feedback positively to increase psen1 transcription through a mechanism apparently independent of gamma-secretase. We present evidence that the dominant negative effects are mediated through production of truncated Psen1 peptides that interfere with the normal activity of both Psen1 and Psen2. Mutations causing such truncations would be dominant lethal in embryo development. Somatic cellular changes in ageing cells that interfere with PSEN1 splicing, or otherwise cause protein truncation, might contribute to sporadic Alzheimer's disease, cancer and other diseases.


Assuntos
Mutação , Presenilina-1/genética , Presenilina-1/metabolismo , Splicing de RNA , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Códon sem Sentido , Primers do DNA/genética , Modelos Animais de Doenças , Éxons , Humanos , Hidrocefalia/embriologia , Hidrocefalia/genética , Mutação de Sentido Incorreto , Oligodesoxirribonucleotídeos Antissenso/genética , Fenótipo , Doença de Pick/genética , Presenilina-1/química , Presenilina-2/química , Presenilina-2/genética , Presenilina-2/metabolismo , Biossíntese de Proteínas , Transcrição Gênica , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/química
19.
Exp Cell Res ; 315(16): 2791-801, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19563801

RESUMO

Presenilin1 (PSEN1) and presenilin2 (PSEN2) are involved in the processing of type-1 transmembrane proteins including the amyloid precursor protein (APP), Notch and several others. PSEN1 has been shown to be crucial for proteolytic cleavage of Notch in developing animal embryos. Mouse embryos lacking Psen1 function show disturbed neurogenesis and somite formation, resembling Notch pathway mutants. However, loss of Psen2 activity reveals only a minor phenotype. Zebrafish embryos are a valuable tool for analysis of the molecular genetic control of cell differentiation since endogenous gene expression can be modulated in subtle and complex ways to give a phenotypic readout. Using injection of morpholino antisense oligonucleotides to inhibit protein translation in zebrafish embryos, we show that reduced Psen2 activity decreases the number of melanocytes in the trunk but not in the cranial area at 2 days post fertilisation (dpf). Reduced Psen2 activity apparently reduces Notch signalling resulting in perturbed spinal neurogenin1 (neurog1) expression, neurogenesis and trunk and tail neural crest development. Similar effects are seen for reduced Psen1 activity. These results suggest that Psen2 plays a more prominent role in Notch signalling and embryo development in zebrafish than in mammals. Intriguingly, decreased Psen2 activity increases the number of Dorsal Longitudinal Ascending (DoLA) interneurons in the spinal cord while decreased Psen1 activity has no effect. However, the effect on DoLAs of reduced Psen2 can be ameliorated by Psen1 loss. The effects of changes in Psen2 activity on DoLA interneurons and other cells in zebrafish embryos provide bioassays for more detailed dissection of Psen2 function.


Assuntos
Presenilina-1/metabolismo , Presenilina-2/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Morfogênese/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Fenótipo , Presenilina-1/química , Presenilina-1/genética , Presenilina-2/química , Presenilina-2/genética , Conformação Proteica , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transdução de Sinais/fisiologia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
20.
J Alzheimers Dis Rep ; 4(1): 123-140, 2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32587946

RESUMO

Sortilin-related receptor 1 (SORL1) encodes a large, multi-domain containing, membrane-bound receptor involved in endosomal sorting of proteins between the trans-Golgi network, endosomes and the plasma membrane. It is genetically associated with Alzheimer's disease (AD), the most common form of dementia. SORL1 is a unique gene in AD, as it appears to show strong associations with the common, late-onset, sporadic form of AD and the rare, early-onset familial form of AD. Here, we review the genetics of SORL1 in AD and discuss potential roles it could play in AD pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA