Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Immunol ; 5(51)2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978242

RESUMO

Sterile tissue injury is thought to locally activate innate immune responses via damage-associated molecular patterns (DAMPs). Whether innate immune pathways are remotely activated remains relatively unexplored. Here, by analyzing ~145,000 single-cell transcriptomes at steady state and after myocardial infarction (MI) in mice and humans, we show that the type I interferon (IFN) response, characterized by expression of IFN-stimulated genes (ISGs), begins far from the site of injury, in neutrophil and monocyte progenitors within the bone marrow. In the peripheral blood of patients, we observed defined subsets of ISG-expressing neutrophils and monocytes. In the bone marrow and blood of mice, ISG expression was detected in neutrophils and monocytes and their progenitors, intensified with maturation at steady-state and after MI, and was controlled by Tet2 and Irf3 transcriptional regulators. Within the infarcted heart, ISG-expressing cells were negatively regulated by Nrf2 activation in Ccr2- steady-state cardiac macrophages. Our results show that IFN signaling begins in the bone marrow, implicate multiple transcriptional regulators (Tet2, Irf3, and Nrf2) in governing ISG expression, and provide a clinical biomarker (ISG score) for studying IFN signaling in patients.


Assuntos
Medula Óssea/imunologia , Proteínas de Ligação a DNA/imunologia , Dioxigenases/imunologia , Fator Regulador 3 de Interferon/imunologia , Interferon Tipo I/imunologia , Macrófagos/imunologia , Infarto do Miocárdio/imunologia , Fator 2 Relacionado a NF-E2/imunologia , Animais , Feminino , Humanos , Fator Regulador 3 de Interferon/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Fator 2 Relacionado a NF-E2/genética , Neutrófilos/imunologia , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia
2.
Nat Med ; 23(12): 1481-1487, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29106401

RESUMO

Interferon regulatory factor 3 (IRF3) and type I interferons (IFNs) protect against infections and cancer, but excessive IRF3 activation and type I IFN production cause autoinflammatory conditions such as Aicardi-Goutières syndrome and STING-associated vasculopathy of infancy (SAVI). Myocardial infarction (MI) elicits inflammation, but the dominant molecular drivers of MI-associated inflammation remain unclear. Here we show that ischemic cell death and uptake of cell debris by macrophages in the heart fuel a fatal response to MI by activating IRF3 and type I IFN production. In mice, single-cell RNA-seq analysis of 4,215 leukocytes isolated from infarcted and non-infarcted hearts showed that MI provokes activation of an IRF3-interferon axis in a distinct population of interferon-inducible cells (IFNICs) that were classified as cardiac macrophages. Mice genetically deficient in cyclic GMP-AMP synthase (cGAS), its adaptor STING, IRF3, or the type I IFN receptor IFNAR exhibited impaired interferon-stimulated gene (ISG) expression and, in the case of mice deficient in IRF3 or IFNAR, improved survival after MI as compared to controls. Interruption of IRF3-dependent signaling resulted in decreased cardiac expression of inflammatory cytokines and chemokines and decreased inflammatory cell infiltration of the heart, as well as in attenuated ventricular dilation and improved cardiac function. Similarly, treatment of mice with an IFNAR-neutralizing antibody after MI ablated the interferon response and improved left ventricular dysfunction and survival. These results identify IRF3 and the type I IFN response as a potential therapeutic target for post-MI cardioprotection.


Assuntos
Fator Regulador 3 de Interferon/fisiologia , Interferon Tipo I/fisiologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/mortalidade , Animais , Células Cultivadas , Citocinas/metabolismo , Inflamação/genética , Inflamação/metabolismo , Fator Regulador 3 de Interferon/genética , Interferon Tipo I/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/patologia , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/fisiologia , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA