Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(9): e1009871, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34555123

RESUMO

HIV cerebrospinal fluid (CSF) escape, where HIV is suppressed in blood but detectable in CSF, occurs when HIV persists in the CNS despite antiretroviral therapy (ART). To determine the virus producing cell type and whether lowered CSF ART levels are responsible for CSF escape, we collected blood and CSF from 156 neurosymptomatic participants from Durban, South Africa. We observed that 28% of participants with an undetectable HIV blood viral load showed CSF escape. We detected host cell surface markers on the HIV envelope to determine the cellular source of HIV in participants on the first line regimen of efavirenz, emtricitabine, and tenofovir. We confirmed CD26 as a marker which could differentiate between T cells and macrophages and microglia, and quantified CD26 levels on the virion surface, comparing the result to virus from in vitro infected T cells or macrophages. The measured CD26 level was consistent with the presence of T cell produced virus. We found no significant differences in ART concentrations between CSF escape and fully suppressed individuals in CSF or blood, and did not observe a clear association with drug resistance mutations in CSF virus which would allow HIV to replicate. Hence, CSF HIV in the face of ART may at least partly originate in CD4+ T cell populations.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/líquido cefalorraquidiano , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Linfócitos T/virologia , Adulto , Alcinos/uso terapêutico , Benzoxazinas/uso terapêutico , Ciclopropanos/uso terapêutico , Emtricitabina/uso terapêutico , Feminino , HIV-1 , Humanos , Masculino , Pessoa de Meia-Idade , Tenofovir/uso terapêutico
2.
Commun Biol ; 7(1): 584, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755239

RESUMO

B cells are important in tuberculosis (TB) immunity, but their role in the human lung is understudied. Here, we characterize B cells from lung tissue and matched blood of patients with TB and found they are decreased in the blood and increased in the lungs, consistent with recruitment to infected tissue, where they are located in granuloma associated lymphoid tissue. Flow cytometry and transcriptomics identify multiple B cell populations in the lung, including those associated with tissue resident memory, germinal centers, antibody secretion, proinflammatory atypical B cells, and regulatory B cells, some of which are expanded in TB disease. Additionally, TB lungs contain high levels of Mtb-reactive antibodies, specifically IgM, which promotes Mtb phagocytosis. Overall, these data reveal the presence of functionally diverse B cell subsets in the lungs of patients with TB and suggest several potential localized roles that may represent a target for interventions to promote immunity or mitigate immunopathology.


Assuntos
Linfócitos B , Humanos , Linfócitos B/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/fisiologia , Fenótipo , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/patologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/genética , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Masculino , Feminino , Adulto
3.
Front Immunol ; 13: 912038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330531

RESUMO

Lymphoid tissues are an important HIV reservoir site that persists in the face of antiretroviral therapy and natural immunity. Targeting these reservoirs by harnessing the antiviral activity of local tissue-resident memory (TRM) CD8+ T-cells is of great interest, but limited data exist on TRM-like cells within lymph nodes of people living with HIV (PLWH). Here, we studied tonsil CD8+ T-cells obtained from PLWH and uninfected controls from South Africa. We show that these cells are preferentially located outside the germinal centers (GCs), the main reservoir site for HIV, and display a low cytolytic and a transcriptionally TRM-like profile distinct from blood CD8+ T-cells. In PLWH, CD8+ TRM-like cells are expanded and adopt a more cytolytic, activated, and exhausted phenotype not reversed by antiretroviral therapy (ART). This phenotype was enhanced in HIV-specific CD8+ T-cells from tonsils compared to matched blood suggesting a higher antigen burden in tonsils. Single-cell transcriptional and clonotype resolution showed that these HIV-specific CD8+ T-cells in the tonsils express heterogeneous signatures of T-cell activation, clonal expansion, and exhaustion ex-vivo. Interestingly, this signature was absent in a natural HIV controller, who expressed lower PD-1 and CXCR5 levels and reduced transcriptional evidence of T-cell activation, exhaustion, and cytolytic activity. These data provide important insights into lymphoid tissue-derived HIV-specific CD8+ TRM-like phenotypes in settings of HIV remission and highlight their potential for immunotherapy and targeting of the HIV reservoirs.


Assuntos
Linfócitos T CD8-Positivos , Infecções por HIV , Humanos , Memória Imunológica , Tonsila Palatina , Receptores CXCR5 , Infecções por HIV/tratamento farmacológico
4.
Elife ; 112022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36300787

RESUMO

Background: HIV infection dysregulates the B cell compartment, affecting memory B cell formation and the antibody response to infection and vaccination. Understanding the B cell response to SARS-CoV-2 in people living with HIV (PLWH) may explain the increased morbidity, reduced vaccine efficacy, reduced clearance, and intra-host evolution of SARS-CoV-2 observed in some HIV-1 coinfections. Methods: We compared B cell responses to COVID-19 in PLWH and HIV negative (HIV-ve) patients in a cohort recruited in Durban, South Africa, during the first pandemic wave in July 2020 using detailed flow cytometry phenotyping of longitudinal samples with markers of B cell maturation, homing, and regulatory features. Results: This revealed a coordinated B cell response to COVID-19 that differed significantly between HIV-ve and PLWH. Memory B cells in PLWH displayed evidence of reduced germinal centre (GC) activity, homing capacity, and class-switching responses, with increased PD-L1 expression, and decreased Tfh frequency. This was mirrored by increased extrafollicular (EF) activity, with dynamic changes in activated double negative (DN2) and activated naïve B cells, which correlated with anti-RBD-titres in these individuals. An elevated SARS-CoV-2-specific EF response in PLWH was confirmed using viral spike and RBD bait proteins. Conclusions: Despite similar disease severity, these trends were highest in participants with uncontrolled HIV, implicating HIV in driving these changes. EF B cell responses are rapid but give rise to lower affinity antibodies, less durable long-term memory, and reduced capacity to adapt to new variants. Further work is needed to determine the long-term effects of HIV on SARS-CoV-2 immunity, particularly as new variants emerge. Funding: This work was supported by a grant from the Wellcome Trust to the Africa Health Research Institute (Wellcome Trust Strategic Core Award [grant number 201433/Z/16/Z]). Additional funding was received from the South African Department of Science and Innovation through the National Research Foundation (South African Research Chairs Initiative [grant number 64809]), and the Victor Daitz Foundation.


Assuntos
COVID-19 , Infecções por HIV , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , África do Sul , Anticorpos Antivirais
5.
JCI Insight ; 6(16)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34252054

RESUMO

SARS-CoV-2 infects epithelial cells of the human gastrointestinal (GI) tract and causes related symptoms. HIV infection impairs gut homeostasis and is associated with an increased risk of COVID-19 fatality. To investigate the potential link between these observations, we analyzed single-cell transcriptional profiles and SARS-CoV-2 entry receptor expression across lymphoid and mucosal human tissue from chronically HIV-infected individuals and uninfected controls. Absorptive gut enterocytes displayed the highest coexpression of SARS-CoV-2 receptors ACE2, TMPRSS2, and TMPRSS4, of which ACE2 expression was associated with canonical interferon response and antiviral genes. Chronic treated HIV infection was associated with a clear antiviral response in gut enterocytes and, unexpectedly, with a substantial reduction of ACE2 and TMPRSS2 target cells. Gut tissue from SARS-CoV-2-infected individuals, however, showed abundant SARS-CoV-2 nucleocapsid protein in both the large and small intestine, including an HIV-coinfected individual. Thus, upregulation of antiviral response genes and downregulation of ACE2 and TMPRSS2 in the GI tract of HIV-infected individuals does not prevent SARS-CoV-2 infection in this compartment. The impact of these HIV-associated intestinal mucosal changes on SARS-CoV-2 infection dynamics, disease severity, and vaccine responses remains unclear and requires further investigation.


Assuntos
Enzima de Conversão de Angiotensina 2/análise , Infecções por HIV/virologia , Mucosa Intestinal/virologia , SARS-CoV-2/isolamento & purificação , Serina Endopeptidases/análise , Adulto , Doença Crônica , Feminino , Humanos , Mucosa Intestinal/química , Masculino , Pessoa de Meia-Idade
6.
JCI Insight ; 6(22)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34618690

RESUMO

HIV infection in the human gastrointestinal (GI) tract is thought to be central to HIV progression, but knowledge of this interaction is primarily limited to cohorts within Westernized countries. Here, we present a large cohort recruited from high HIV endemic areas in South Africa and found that people living with HIV (PLWH) presented at a younger age for investigation in the GI clinic. We identified severe CD4+ T cell depletion in the GI tract, which was greater in the small intestine than in the large intestine and not correlated with years on antiretroviral treatment (ART) or plasma viremia. HIV-p24 staining showed persistent viral expression, particularly in the colon, despite full suppression of plasma viremia. Quantification of mucosal antiretroviral (ARV) drugs revealed no differences in drug penetration between the duodenum and colon. Plasma markers of gut barrier breakdown and immune activation were elevated irrespective of HIV, but peripheral T cell activation was inversely correlated with loss of gut CD4+ T cells in PLWH alone. T cell activation is a strong predictor of HIV progression and independent of plasma viral load, implying that the irreversible loss of GI CD4+ T cells is a key event in the HIV pathogenesis of PLWH in South Africa, yet the underlying mechanisms remain unknown.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Infecções por HIV/imunologia , Ativação Linfocitária/imunologia , Doença Crônica , Humanos
7.
Front Immunol ; 11: 1872, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983107

RESUMO

Tuberculosis remains a leading cause of death globally despite curative treatment, partly due to the difficulty of identifying patients who will not respond to therapy. Simple host biomarkers that correlate with response to drug treatment would facilitate improvement in outcomes and the evaluation of novel therapies. In a prospective longitudinal cohort study, we evaluated neutrophil count and phenotype at baseline, as well as during TB treatment in 79 patients [50 (63%) HIV-positive] with microbiologically confirmed drug susceptible TB undergoing standard treatment. At time of diagnosis, blood neutrophils were highly expanded and surface expression of the neutrophil marker CD15 greatly reduced compared to controls. Both measures changed rapidly with the commencement of drug treatment and returned to levels seen in healthy control by treatment completion. Additionally, at the time of diagnosis, high neutrophil count, and low CD15 expression was associated with higher sputum bacterial load and more severe lung damage on chest x-ray, two clinically relevant markers of disease severity. Furthermore, CD15 expression level at diagnosis was associated with TB culture conversion after 2 months of therapy (OR: 0.14, 95% CI: 0.02, 0.89), a standard measure of early TB treatment success. Importantly, our data was not significantly impacted by HIV co-infection. These data suggest that blood neutrophil metrics could potentially be exploited to develop a simple and rapid test to help determine TB disease severity, monitor drug treatment response, and identify subjects at diagnosis who may respond poorly to treatment.


Assuntos
Biomarcadores/sangue , Antígenos CD15/imunologia , Neutrófilos/imunologia , Tuberculose/sangue , Adolescente , Adulto , Antituberculosos/uso terapêutico , Criança , Coinfecção , Feminino , Infecções por HIV , Humanos , Contagem de Leucócitos , Antígenos CD15/análise , Estudos Longitudinais , Masculino , Neutrófilos/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Tuberculose/imunologia , Adulto Jovem
8.
Cell Rep ; 32(11): 108153, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937142

RESUMO

Innate lymphoid cells (ILCs) are important for response to infection and for immune development in early life. HIV infection in adults depletes circulating ILCs, but the impact on children infected from birth remains unknown. We study vertically HIV-infected children from birth to adulthood and find severe and persistent depletion of all circulating ILCs that, unlike CD4+ T cells, are not restored by long-term antiretroviral therapy unless initiated at birth. Remaining ILCs upregulate genes associated with cellular activation and metabolic perturbation. Unlike HIV-infected adults, ILCs are also profoundly depleted in tonsils of vertically infected children. Transcriptional profiling of remaining ILCs reveals ongoing cell-type-specific activity despite antiretroviral therapy. Collectively, these data suggest an important and ongoing role for ILCs in lymphoid tissue of HIV-infected children from birth, where persistent depletion and sustained transcriptional activity are likely to have long-term immune consequences that merit further investigation.


Assuntos
Antirretrovirais/uso terapêutico , Infecções por HIV/sangue , Infecções por HIV/imunologia , Imunidade Inata , Linfócitos/imunologia , Adolescente , Adulto , Criança , Pré-Escolar , Doença Crônica , Infecções por HIV/tratamento farmacológico , Humanos , Lactente , Recém-Nascido , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Depleção Linfocítica , Subpopulações de Linfócitos/imunologia , Tonsila Palatina/imunologia , Transcrição Gênica , Adulto Jovem
9.
Front Immunol ; 10: 213, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809229

RESUMO

Pediatric slow progressors (PSP) are rare ART-naïve, HIV-infected children who maintain high CD4 T-cell counts and low immune activation despite persistently high viral loads. Using a well-defined cohort of PSP, we investigated the role of regulatory T-cells (TREG) and of IL-7 homeostatic signaling in maintaining normal-for-age CD4 counts in these individuals. Compared to children with progressive disease, PSP had greater absolute numbers of TREG, skewed toward functionally suppressive phenotypes. As with immune activation, overall T-cell proliferation was lower in PSP, but was uniquely higher in central memory TREG (CM TREG), indicating active engagement of this subset. Furthermore, PSP secreted higher levels of the immunosuppressive cytokine IL-10 than children who progressed. The frequency of suppressive TREG, CM TREG proliferation, and IL-10 production were all lower in PSP who go on to progress at a later time-point, supporting the importance of an active TREG response in preventing disease progression. In addition, we find that IL-7 homeostatic signaling is enhanced in PSP, both through preserved surface IL-7receptor (CD127) expression on central memory T-cells and increased plasma levels of soluble IL-7receptor, which enhances the bioactivity of IL-7. Combined analysis, using a LASSO modeling approach, indicates that both TREG activity and homeostatic T-cell signaling make independent contributions to the preservation of CD4 T-cells in HIV-infected children. Together, these data demonstrate that maintenance of normal-for-age CD4 counts in PSP is an active process, which requires both suppression of immune activation through functional TREG, and enhanced T-cell homeostatic signaling.


Assuntos
Infecções por HIV/imunologia , Infecções por HIV/metabolismo , HIV-1/imunologia , Ativação Linfocitária , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Terapia Antirretroviral de Alta Atividade , Biomarcadores , Contagem de Linfócito CD4 , Progressão da Doença , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Homeostase , Humanos , Memória Imunológica , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Carga Viral
10.
Front Immunol ; 9: 1975, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258437

RESUMO

Broadly neutralizing antibodies (bnAbs) against HIV-1 are an effective means of preventing transmission. To better understand the mechanisms by which HIV-specific bnAbs naturally develop, we investigated blood and lymphoid tissue in pediatric infection, since potent bnAbs develop with greater frequency in children than adults. As in adults, the frequency of circulating effector T-follicular helper cells (TFH) in HIV infected, treatment naïve children correlates with neutralization breadth. However, major differences between children and adults were also observed both in circulation, and in a small number of tonsil samples. In children, TFH cells are significantly more abundant, both in blood and in lymphoid tissue germinal centers, than in adults. Second, HIV-specific TFH cells are more frequent in pediatric than in adult lymphoid tissue and secrete the signature cytokine IL-21, which HIV-infected adults do not. Third, the enrichment of IL-21-secreting HIV-specific TFH in pediatric lymphoid tissue is accompanied by increased TFH regulation via more abundant regulatory follicular T-cells and HIV-specific CXCR5+ CD8 T-cells compared to adults. The relationship between regulation and neutralization breadth is also observed in the pediatric PBMC samples and correlates with neutralization breadth. Matching neutralization data from lymphoid tissue samples is not available. However, the distinction between infected children and adults in the magnitude, quality and regulation of HIV-specific TFH responses is consistent with the superior ability of children to develop high-frequency, potent bnAbs. These findings suggest the possibility that the optimal timing for next generation vaccine strategies designed to induce high-frequency, potent bnAbs to prevent HIV infection in adults would be in childhood.


Assuntos
Envelhecimento/imunologia , Centro Germinativo/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Fatores Etários , Envelhecimento/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Criança , Feminino , Centro Germinativo/patologia , Infecções por HIV/patologia , Humanos , Masculino , Linfócitos T Reguladores/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA