Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
STAR Protoc ; 5(1): 102805, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341849

RESUMO

Spinal column tumors can be difficult to process for single-cell omic studies, given the heterogeneity in tissue. Here, we present a protocol for operating room-to-benchtop single-cell processing of clinical specimens from a prostate cancer patient. We describe steps for sample homogenization, red blood cell lysis, cryopreservation, and single-cell sequencing analysis. This protocol can be used to identify prognostic markers and therapeutic targets for patients with osseous spine metastases and better inform eligibility for clinical trials.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Microambiente Tumoral/genética , Neoplasias da Próstata/genética , Coluna Vertebral , Análise de Sequência de RNA/métodos
2.
Sci Rep ; 14(1): 1921, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253556

RESUMO

Ten patients undergoing surgical resection for spinal tumors were selected. Samples of tumor, muscle, and bone were resected, de-identified by the treating surgeon, and then scanned with the TumorID technology ex vivo. This study investigates whether TumorID technology is able to differentiate three different human clinical fresh tissue specimens: spine tumor, normal muscle, and normal bone. The TumorID technology utilizes a 405 nm excitation laser to target endogenous fluorophores, thereby allowing for the detection of tissue based on emission spectra. Metabolic profiles of tumor and healthy tissue vary, namely NADH (bound and free emission peak, respectively: 487 nm, 501 nm) and FAD (emission peak: 544) are endogenous fluorophores with distinct concentrations in tumor and healthy tissue. Emission spectra analyzed consisted of 74 scans of spine tumor, 150 scans of healthy normal bone, and 111 scans of healthy normal muscle. An excitation wavelength of 405 nm was used to obtain emission spectra from tissue as previously described. Emission spectra consisted of approximately 1400 wavelength intensity pairs between 450 and 750 nm. Kruskal-Wallis tests were conducted comparing AUC distributions for each treatment group, α = 0.05. Spectral signatures varied amongst the three different tissue types. All pairwise comparisons among tissues for Free NADH were statistically significant (Tumor vs. Muscle: p = 0.0006, Tumor vs. Bone: p < 0.0001, Bone vs. Muscle: p = 0.0357). The overall comparison of tissues for FAD (506.5-581.5 nm) was also statistically significant (p < 0.0001), with two pairwise comparisons being statistically significant (Tumor vs. Muscle: p < 0.0001, Tumor vs. Bone: p = 0.0045, Bone vs. Muscle: p = 0.249). These statistically significant differences were maintained when stratifying tumor into metastatic carcinoma (N = 57) and meningioma (N = 17). TumorID differentiates tumor tissue from normal bone and normal muscle providing further clinical evidence of its efficacy as a tissue identification tool. Future studies should evaluate TumorID's ability to serve as an adjunctive tool for intraoperative assessment of surgical margins and surgical decision-making.


Assuntos
Neoplasias Meníngeas , NAD , Humanos , Espectrometria de Fluorescência , Músculos , Corantes Fluorescentes , Ionóforos , Lasers
3.
bioRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562874

RESUMO

Survival for metastatic breast cancer is low and thus, continued efforts to treat and prevent metastatic progression are critical. Estrogen is shown to promote aggressive phenotypes in multiple cancer models irrespective of estrogen receptor (ER) status. Similarly, UDP-Glucose 6-dehydrogenase (UGDH) a ubiquitously expressed enzyme involved in extracellular matrix precursors, as well as hormone processing increases migratory and invasive properties in cancer models. While the role of UGDH in cellular migration is defined, how it intersects with and impacts hormone signaling pathways associated with tumor progression in metastatic breast cancer has not been explored. Here we demonstrate that UGDH knockdown blunts estrogen-induced tumorigenic phenotypes (migration and colony formation) in ER+ and ER- breast cancer in vitro. Knockdown of UGDH also inhibits extravasation of ER- breast cancer ex vivo, primary tumor growth and animal survival in vivo in both ER+ and ER- breast cancer. We also use single cell RNA-sequencing to demonstrate that our findings translate to a human breast cancer clinical specimen. Our findings support the role of estrogen and UGDH in breast cancer progression provide a foundation for future studies to evaluate the role of UGDH in therapeutic resistance to improve outcomes and survival for breast cancer patients.

4.
Oncotarget ; 14: 843-857, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37769033

RESUMO

UDP-glucose-6-dehydrogenase (UGDH) is a cytosolic, hexameric enzyme that converts UDP-glucose to UDP-glucuronic acid (UDP-GlcUA), a key reaction in hormone and xenobiotic metabolism and in the production of extracellular matrix precursors. In this review, we classify UGDH as a molecular indicator of tumor progression in multiple cancer types, describe its involvement in key canonical cancer signaling pathways, and identify methods to inhibit UGDH, its substrates, and its downstream products. As such, we position UGDH as an enzyme to be exploited as a potential prognostication marker in oncology and a therapeutic target in cancer biology.


Assuntos
Neoplasias , Uridina Difosfato Glucose Desidrogenase , Humanos , Uridina Difosfato Glucose Desidrogenase/genética , Uridina Difosfato Glucose Desidrogenase/química , Uridina Difosfato Glucose , Neoplasias/genética , Oncologia , Glucose , Biologia , Glucose Desidrogenase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA