RESUMO
The dorsal striatum has been linked to decision-making under conflict, but the mechanism by which striatal neurons contribute to approach-avoidance conflicts remains unclear. We hypothesized that striatopallidal dopamine D2 receptor (D2R)-expressing neurons promote avoidance, and tested this hypothesis in two exploratory approach-avoidance conflict paradigms in mice: the elevated zero maze and open field. Genetic elimination of D2Rs on striatopallidal neurons (iMSNs), but not other neural populations, increased avoidance of the open areas in both tasks, in a manner that was dissociable from global changes in movement. Population calcium activity of dorsomedial iMSNs was disrupted in mice lacking D2Rs on iMSNs, suggesting that disrupted output of iMSNs contributes to heightened avoidance behavior. Consistently, artificial disruption of iMSN output with optogenetic stimulation heightened avoidance of open areas of these tasks, while inhibition of iMSN output reduced avoidance. We conclude that dorsomedial striatal iMSNs control approach-avoidance conflicts in exploratory tasks, and highlight this neural population as a potential target for reducing avoidance in anxiety disorders.
Assuntos
Aprendizagem da Esquiva/fisiologia , Corpo Estriado/metabolismo , Neurônios/metabolismo , Animais , Transtornos de Ansiedade , Encéfalo/metabolismo , Linhagem Celular , Feminino , Substância Cinzenta/metabolismo , Hábitos , Inibição Psicológica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Optogenética/métodos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transtorno de Movimento EstereotipadoRESUMO
A correction to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Extensive computational and neurobiological work has focused on how the training schedule, i.e., the duration and rate at which an environmental disturbance is presented, shapes the formation of motor memories. If long-lasting benefits are to be derived from motor training, however, retention of the performance improvements gained during practice is essential. Thus a better understanding of mechanisms that promote retention could lead to the design of more effective training procedures. The few studies that have investigated how retention depends on the training schedule have suggested that the gradual exposure of a perturbation leads to improved retention of motor memory compared with an abrupt exposure. However, several of these previous studies showed small effects, and although some controlled the training duration and others the level of learning, none have controlled both. In the present study we disambiguated both of these effects from exposure rate by systematically varying the duration of training, type of trained dynamics, and exposure rate for these dynamics in human force-field adaptation. After controlling for both training duration and the amount of learning, we found essentially identical retention when comparing gradual and abrupt training for two different types of force-field dynamics. By contrast, we found that retention was markedly higher for long-duration compared with short-duration training for both types of dynamics. These results demonstrate that the duration of training has a far greater effect on the retention of motor memory than the exposure rate during training. We show that a multirate learning model provides a computational mechanism for these findings.NEW & NOTEWORTHY Previous studies have suggested that a gradual, incremental introduction of a novel environment is helpful for improving retention. However, we used experimental and computational approaches to demonstrate that previously reported improvements in retention associated with gradual introductions fail to persist when other factors, including the duration of training and the degree of initial learning, are accounted for.
Assuntos
Adaptação Fisiológica/fisiologia , Destreza Motora/fisiologia , Prática Psicológica , Retenção Psicológica/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto JovemRESUMO
Humans rapidly adapt reaching movements in response to perturbations (e.g., manipulations of movement dynamics or visual feedback). Following a break, when reexposed to the same perturbation, subjects demonstrate savings, a faster learning rate compared with the time course of initial training. Although this has been well studied, there are open questions on the extent early savings reflects the rapid recall of previous performance. To address this question, we examined how the properties of initial training (duration and final adaptive state) influence initial single-trial adaptation to force-field perturbations when training sessions were separated by 24 h. There were two main groups that were distinct based on the presence or absence of a washout period at the end of day 1 (with washout vs. without washout). We also varied the training duration on day 1 (15, 30, 90, or 160 training trials), resulting in 8 subgroups of subjects. We show that single-trial adaptation on day 2 scaled with training duration, even for similar asymptotic levels of learning on day 1 of training. Interestingly, the temporal force profile following the first perturbation on day 2 matched that at the end of day 1 for the longest training duration group that did not complete the washout. This correspondence persisted but was significantly lower for shorter training durations and the washout subject groups. Collectively, the results suggest that the adaptation observed very early in reexposure results from the rapid recall of the previously learned motor recalibration but is highly dependent on the initial training duration and final adaptive state.NEW & NOTEWORTHY The extent initial readaptation reflects the recall of previous motor performance is largely unknown. We examined early single-trial force-field adaptation on the second day of training and distinguished initial retention from recall. We found that the single-trial adaptation following the 24-h break matched that at the end of the first day, but this recall was modified by the training duration and final level of learning on the first day of training.
Assuntos
Adaptação Fisiológica/fisiologia , Rememoração Mental/fisiologia , Atividade Motora/fisiologia , Prática Psicológica , Desempenho Psicomotor/fisiologia , Adulto , Retroalimentação Sensorial/fisiologia , Feminino , Humanos , Masculino , Fatores de TempoRESUMO
Motor adaptation paradigms provide a quantitative method to study short-term modification of motor commands. Despite the growing understanding of the role motion states (e.g., velocity) play in this form of motor learning, there is little information on the relative stability of memories based on these movement characteristics, especially in comparison to the initial adaptation. Here, we trained subjects to make reaching movements perturbed by force patterns dependent upon either limb position or velocity. Following training, subjects were exposed to a series of error-clamp trials to measure the temporal characteristics of the feedforward motor output during the decay of learning. The compensatory force patterns were largely based on the perturbation kinematic (e.g., velocity), but also showed a small contribution from the other motion kinematic (e.g., position). However, the velocity contribution in response to the position-based perturbation decayed at a slower rate than the position contribution to velocity-based training, suggesting a difference in stability. Next, we modified a previous model of motor adaptation to reflect this difference and simulated the behavior for different learning goals. We were interested in the stability of learning when the perturbations were based on different combinations of limb position or velocity that subsequently resulted in biased amounts of motion-based learning. We trained additional subjects on these combined motion-state perturbations and confirmed the predictions of the model. Specifically, we show that (1) there is a significant separation between the observed gain-space trajectories for the learning and decay of adaptation and (2) for combined motion-state perturbations, the gain associated to changes in limb position decayed at a faster rate than the velocity-dependent gain, even when the position-dependent gain at the end of training was significantly greater. Collectively, these results suggest that the state-dependent adaptation associated with movement velocity is relatively more stable than that based on position.
Assuntos
Adaptação Fisiológica/fisiologia , Aprendizagem/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Biologia Computacional , Feminino , Humanos , Masculino , Análise e Desempenho de TarefasRESUMO
The operant conditioning chamber is a cornerstone of animal behavioral research. Operant boxes are used to assess learning and motivational behavior in animals, particularly for food and drug reinforcers. However, commercial operant chambers cost several thousands of dollars. We have constructed the Rodent Operant Bucket (ROBucket), an inexpensive and easily assembled open-source operant chamber based on the Arduino microcontroller platform, which can be used to train mice to respond for sucrose solution or other liquid reinforcers. The apparatus contains two nose pokes, a drinking well, and a solenoid-controlled liquid delivery system. ROBucket can run fixed ratio and progressive ratio training schedules, and can be programmed to run more complicated behavioral paradigms. Additional features such as motion sensing and video tracking can be added to the operant chamber through the array of widely available Arduino-compatible sensors. The design files and programming code are open source and available online for others to use.
Assuntos
Pesquisa Comportamental/instrumentação , Condicionamento Operante , Animais , Masculino , Camundongos , Esquema de ReforçoRESUMO
Optogenetic stimulation of Adora2a receptor-expressing spiny projection neurons (A2A-SPNs) in the striatum drives locomotor suppression and transient punishment, results attributed to activation of the indirect pathway. The sole long-range projection target of A2A-SPNs is the external globus pallidus (GPe). Unexpectedly, we found that inhibition of the GPe drove transient punishment but not suppression of movement. Within the striatum, A2A-SPNs inhibit other SPNs through a short-range inhibitory collateral network, and we found that optogenetic stimuli that drove motor suppression shared a common mechanism of recruiting this inhibitory collateral network. Our results suggest that the indirect pathway plays a more prominent role in transient punishment than in motor control and challenges the assumption that activity of A2A-SPNs is synonymous with indirect pathway activity.
Assuntos
Gânglios da Base , Punição , Corpo Estriado , Globo Pálido/fisiologia , Movimento/fisiologiaRESUMO
Robust locomotion is critical to many species' survival, yet the mechanisms by which efficient locomotion is learned and maintained are poorly understood. In mice, a common paradigm for assaying locomotor learning is the rotarod task, in which mice learn to maintain balance atop of an accelerating rod. However, the standard metric for learning in this task is improvements in latency to fall, which gives little insight into the rich kinematic adjustments that accompany locomotor learning. In this study, we developed a rotarod-like task called the RotaWheel in which changes in paw kinematics are tracked using high-speed cameras as mice learn to stay atop an accelerating wheel. Using this device, we found that learning was accompanied by stereotyped progressions of paw kinematics that correlated with early, intermediate, and late stages of performance. Within the first day, mice sharpened their interlimb coordination using a timed pause in the forward swing of their forepaws. Over the next several days, mice reduced their stride length and took shorter, quicker steps. By the second week of training, mice began to use a more variable locomotor strategy, where consecutive overshoots or undershoots in strides were selected across paws to drive forward and backward exploration of the wheel. Collectively, our results suggest that mouse locomotor learning occurs through multiple mechanisms evolving over separate time courses and involving distinct corrective actions. These data provide insights into the kinematic strategies that accompany locomotor learning and establish an experimental platform for studying locomotor skill learning in mice.
Assuntos
Aprendizagem , Locomoção , Animais , Fenômenos Biomecânicos , CamundongosRESUMO
Feeding is critical for survival, and disruption in the mechanisms that govern food intake underlies disorders such as obesity and anorexia nervosa. It is important to understand both food intake and food motivation to reveal mechanisms underlying feeding disorders. Operant behavioral testing can be used to measure the motivational component to feeding, but most food intake monitoring systems do not measure operant behavior. Here, we present a new solution for monitoring both food intake and motivation in rodent home-cages: the Feeding Experimentation Device version 3 (FED3). FED3 measures food intake and operant behavior in rodent home-cages, enabling longitudinal studies of feeding behavior with minimal experimenter intervention. It has a programmable output for synchronizing behavior with optogenetic stimulation or neural recordings. Finally, FED3 design files are open-source and freely available, allowing researchers to modify FED3 to suit their needs.
Obesity and anorexia nervosa are two health conditions related to food intake. Researchers studying these disorders in animal models need to both measure food intake and assess behavioural factors: that is, why animals seek and consume food. Measuring an animal's food intake is usually done by weighing food containers. However, this can be inaccurate due to the small amount of food that rodents eat. As for studying feeding motivation, this can involve calculating the number of times an animal presses a lever to receive a food pellet. These tests are typically conducted in hour-long sessions in temporary testing cages, called operant boxes. Yet, these tests only measure a brief period of a rodent's life. In addition, it takes rodents time to adjust to these foreign environments, which can introduce stress and may alter their feeding behaviour. To address this, Matikainen-Ankney, Earnest, Ali et al. developed a device for monitoring food intake and feeding behaviours around the clock in rodent home cages with minimal experimenter intervention. This 'Feeding Experimentation Device' (FED3) features a pellet dispenser and two 'nose-poke' sensors to measure total food intake, as well as motivation for and learning about food rewards. The battery-powered, wire-free device fits in standard home cages, enabling long-term studies of feeding behaviour with minimal intervention from investigators and less stress on the animals. This means researchers can relate data to circadian rhythms and meal patterns, as Matikainen-Ankney did here. Moreover, the device software is open-source so researchers can customise it to suit their experimental needs. It can also be programmed to synchronise with other instruments used in animal experiments, or across labs running the same behavioural tasks for multi-site studies. Used in this way, it could help improve reproducibility and reliability of results from such studies. In summary, Matikainen-Ankney et al. have presented a new practical solution for studying food-related behaviours in mice and rats. Not only could the device be useful to researchers, it may also be suitable to use in educational settings such as teaching labs and classrooms.
Assuntos
Criação de Animais Domésticos , Condicionamento Operante , Desenho de Equipamento/instrumentação , Comportamento Alimentar , Abrigo para Animais , Roedores/fisiologia , Animais , Ingestão de Alimentos , Feminino , Masculino , CamundongosRESUMO
OBJECTIVE: Ad libitum high-fat diets (HFDs) spontaneously increase caloric intake in rodents, which correlates positively with weight gain. However, it remains unclear why rodents overeat HFDs. This paper investigated how changing the proportion of diet that came from HFDs might alter daily caloric intake in mice. METHODS: Mice were given 25%, 50%, or 90% of their daily caloric need from an HFD, along with ad libitum access to a low-fat rodent chow diet. Food intake was measured daily to determine how these HFD supplements impacted total daily caloric intake. Follow-up experiments addressed the timing of HFD feeding. RESULTS: HFD supplements did not alter total caloric intake or body weight. In a follow-up experiment, mice consumed approximately 50% of their daily caloric need from an HFD in 30 minutes during the light cycle, a time when mice do not normally consume food. CONCLUSIONS: An HFD did not disrupt regulation of total daily caloric intake, even when up to 90% of total calories came from the HFD. However, HFDs increased daily caloric intake when provided ad libitum and were readily consumed by mice outside of their normal feeding cycle. Ad libitum HFDs appear to induce overconsumption beyond the mechanisms that regulate daily caloric intake.
Assuntos
Dieta Hiperlipídica/psicologia , Ingestão de Alimentos , Ingestão de Energia , Comportamento Alimentar , Hiperfagia/etiologia , Animais , Peso Corporal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Aumento de PesoRESUMO
Food intake measurements are essential for many research studies. Here, we provide a detailed description of a novel solution for measuring food intake in mice: the Feeding Experimentation Device (FED). FED is an open-source system that was designed to facilitate flexibility in food intake studies. Due to its compact and battery powered design, FED can be placed within standard home cages or other experimental equipment. Food intake measurements can also be synchronized with other equipment in real-time via FED's transistor-transistor logic (TTL) digital output, or in post-acquisition processing as FED timestamps every event with a real-time clock. When in use, a food pellet sits within FED's food well where it is monitored via an infrared beam. When the pellet is removed by the mouse, FED logs the timestamp onto its internal secure digital (SD) card and dispenses another pellet. FED can run for up to 5 days before it is necessary to charge the battery and refill the pellet hopper, minimizing human interference in data collection. Assembly of FED requires minimal engineering background, and off-the-shelf materials and electronics were prioritized in its construction. We also provide scripts for analysis of food intake and meal patterns. Finally, FED is open-source and all design and construction files are online, to facilitate modifications and improvements by other researchers.
Assuntos
Desenho Assistido por Computador , Ingestão de Alimentos , Comportamento Alimentar , Abrigo para Animais , Animais , Desenho de Equipamento , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , RoedoresRESUMO
BACKGROUND: Measuring food intake in rodents is a conceptually simple yet labor-intensive and temporally-imprecise task. Most commonly, food is weighed manually, with an interval of hours or days between measurements. Commercial feeding monitors are excellent, but are costly and require specialized caging and equipment. NEW METHOD: We have developed the Feeding Experimentation Device (FED): a low-cost, open-source, home cage-compatible feeding system. FED utilizes an Arduino microcontroller and open-source software and hardware. FED dispenses a single food pellet into a food well where it is monitored by an infrared beam. When the mouse removes the pellet, FED logs the timestamp to a secure digital (SD) card and dispenses a new pellet into the well. Post-hoc analyses of pellet retrieval timestamps reveal high-resolution details about feeding behavior. RESULTS: FED is capable of accurately measuring food intake, identifying discrete trends during light and dark-cycle feeding. Additionally, we show the utility of FED for measuring increases in feeding resulting from optogenetic stimulation of agouti-related peptide neurons in the arcuate nucleus of the hypothalamus. COMPARISON TO EXISTING METHODS: With a cost of â¼$350 per device, FED is >10× cheaper than commercially available feeding systems. FED is also self-contained, battery powered, and designed to be placed in standard colony rack cages, allowing for monitoring of true home cage feeding behavior. Moreover, FED is highly adaptable and can be synchronized with emerging techniques in neuroscience, such as optogenetics, as we demonstrate here. CONCLUSIONS: FED allows for accurate, precise monitoring of feeding behavior in a home cage setting.