Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(33): e2204146119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35960845

RESUMO

Microbes are found in nearly every habitat and organism on the planet, where they are critical to host health, fitness, and metabolism. In most organisms, few microbes are inherited at birth; instead, acquiring microbiomes generally involves complicated interactions between the environment, hosts, and symbionts. Despite the criticality of microbiome acquisition, we know little about where hosts' microbes reside when not in or on hosts of interest. Because microbes span a continuum ranging from generalists associating with multiple hosts and habitats to specialists with narrower host ranges, identifying potential sources of microbial diversity that can contribute to the microbiomes of unrelated hosts is a gap in our understanding of microbiome assembly. Microbial dispersal attenuates with distance, so identifying sources and sinks requires data from microbiomes that are contemporary and near enough for potential microbial transmission. Here, we characterize microbiomes across adjacent terrestrial and aquatic hosts and habitats throughout an entire watershed, showing that the most species-poor microbiomes are partial subsets of the most species-rich and that microbiomes of plants and animals are nested within those of their environments. Furthermore, we show that the host and habitat range of a microbe within a single ecosystem predicts its global distribution, a relationship with implications for global microbial assembly processes. Thus, the tendency for microbes to occupy multiple habitats and unrelated hosts enables persistent microbiomes, even when host populations are disjunct. Our whole-watershed census demonstrates how a nested distribution of microbes, following the trophic hierarchies of hosts, can shape microbial acquisition.


Assuntos
Ecossistema , Microbiota , Plantas , Animais , Bactérias , Plantas/microbiologia
2.
New Phytol ; 242(4): 1448-1475, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581203

RESUMO

Research on mycorrhizal symbiosis has been slowed by a lack of established study systems. To address this challenge, we have been developing Suillus, a widespread ecologically and economically relevant fungal genus primarily associated with the plant family Pinaceae, into a model system for studying ectomycorrhizal (ECM) associations. Over the last decade, we have compiled extensive genomic resources, culture libraries, a phenotype database, and protocols for manipulating Suillus fungi with and without their tree partners. Our efforts have already resulted in a large number of publicly available genomes, transcriptomes, and respective annotations, as well as advances in our understanding of mycorrhizal partner specificity and host communication, fungal and plant nutrition, environmental adaptation, soil nutrient cycling, interspecific competition, and biological invasions. Here, we highlight the most significant recent findings enabled by Suillus, present a suite of protocols for working with the genus, and discuss how Suillus is emerging as an important model to elucidate the ecology and evolution of ECM interactions.


Assuntos
Evolução Biológica , Modelos Biológicos , Micorrizas , Micorrizas/fisiologia , Micorrizas/genética , Ecologia , Simbiose/genética , Basidiomycota/fisiologia , Basidiomycota/genética
3.
Microb Ecol ; 84(1): 33-43, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34468785

RESUMO

Geothermal soils offer unique insight into the way extreme environmental factors shape communities of organisms. However, little is known about the fungi growing in these environments and in particular how localized steep abiotic gradients affect fungal diversity. We used metabarcoding to characterize soil fungi surrounding a hot spring-fed thermal creek with water up to 84 °C and pH 10 in Yellowstone National Park. We found a significant association between fungal communities and soil variable principal components, and we identify the key trends in co-varying soil variables that explain the variation in fungal community. Saprotrophic and ectomycorrhizal fungi community profiles followed, and were significantly associated with, different soil variable principal components, highlighting potential differences in the factors that structure these different fungal trophic guilds. In addition, in vitro growth experiments in four target fungal species revealed a wide range of tolerances to pH levels but not to heat. Overall, our results documenting turnover in fungal species within a few hundred meters suggest many co-varying environmental factors structure the diverse fungal communities found in the soils of Yellowstone National Park.


Assuntos
Micobioma , Micorrizas , Fungos/genética , Parques Recreativos , Solo/química , Microbiologia do Solo
4.
New Phytol ; 230(2): 774-792, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33355923

RESUMO

While there has been significant progress characterizing the 'symbiotic toolkit' of ectomycorrhizal (ECM) fungi, how host specificity may be encoded into ECM fungal genomes remains poorly understood. We conducted a comparative genomic analysis of ECM fungal host specialists and generalists, focusing on the specialist genus Suillus. Global analyses of genome dynamics across 46 species were assessed, along with targeted analyses of three classes of molecules previously identified as important determinants of host specificity: small secreted proteins (SSPs), secondary metabolites (SMs) and G-protein coupled receptors (GPCRs). Relative to other ECM fungi, including other host specialists, Suillus had highly dynamic genomes including numerous rapidly evolving gene families and many domain expansions and contractions. Targeted analyses supported a role for SMs but not SSPs or GPCRs in Suillus host specificity. Phylogenomic-based ancestral state reconstruction identified Larix as the ancestral host of Suillus, with multiple independent switches between white and red pine hosts. These results suggest that like other defining characteristics of the ECM lifestyle, host specificity is a dynamic process at the genome level. In the case of Suillus, both SMs and pathways involved in the deactivation of reactive oxygen species appear to be strongly associated with enhanced host specificity.


Assuntos
Micorrizas , Pinus , Evolução Molecular , Fungos/genética , Genoma Fúngico , Genômica , Micorrizas/genética , Especialização
5.
Mol Ecol ; 29(21): 4157-4169, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32866320

RESUMO

Human-altered environments can shape the evolution of organisms. Fungi are no exception, although little is known about how they withstand anthropogenic pollution. Here, we document adaptation in the mycorrhizal fungus Suillus luteus driven by soil heavy metal contamination. Genome scans across individuals from recently polluted and nearby unpolluted soils in Belgium revealed low divergence across isolates and no evidence of population structure based on soil type. However, we detected single nucleotide polymorphism divergence and gene copy-number variation, with different genetic combinations potentially conferring the ability to persist in contaminated soils. Variants were shared across the population but found to be under selection in isolates exposed to pollution and located across the genome, including in genes involved in metal exclusion, storage, immobilization and reactive oxygen species detoxification. Together, our results point to S. luteus undergoing the initial steps of adaptive divergence and contribute to understanding the processes underlying local adaptation under strong environmental selection.


Assuntos
Metais Pesados , Micorrizas , Poluentes do Solo , Basidiomycota , Bélgica , Humanos , Polimorfismo de Nucleotídeo Único/genética
6.
New Phytol ; 220(4): 1273-1284, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29411381

RESUMO

Despite the importance of ectomycorrhizal (ECM) fungi in forest ecosystems, knowledge about the ecological and co-evolutionary mechanisms underlying ECM host associations remains limited. Using a widely distributed group of ECM fungi known to form tight associations with trees in the family Pinaceae, we characterized host specificity among three unique Suillus-host species pairs using a combination of field root tip sampling and experimental bioassays. We demonstrate that the ECM fungus S. subaureus can successfully colonize Quercus hosts in both field and glasshouse settings, making this species unique in an otherwise Pinaceae-specific clade. Importantly, however, we found that the colonization of Quercus by S. subaureus required co-planting with a Pinaceae host. While our experimental results indicate that gymnosperms are required for the establishment of new S. subaureus colonies, Pineaceae hosts are locally absent at both our field sites. Given the historical presence of Pineaceae hosts before human alteration, it appears the current S. subaureus-Quercus associations represent carryover from past host presence. Collectively, our results suggest that patterns of ECM specificity should be viewed not only in light of current forest community composition, but also as a legacy effect of host community change over time.


Assuntos
Especificidade de Hospedeiro/fisiologia , Micorrizas/fisiologia , Bioensaio , Contagem de Colônia Microbiana , Micorrizas/crescimento & desenvolvimento , Pinaceae/microbiologia , Quercus/microbiologia , Especificidade da Espécie , Esporos Fúngicos/fisiologia
8.
Mycorrhiza ; 28(3): 315-328, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29504037

RESUMO

Despite covering vast areas of boreal North America, the ecological factors structuring mycorrhizal fungal communities in peatland forests are relatively poorly understood. To assess how these communities vary by age (younger vs. mature), habitat (fen vs. bog), and host (conifer trees vs. ericaceous shrub), we sampled the roots of two canopy trees (Larix laricina and Picea mariana) and an ericaceous shrub (Ledum groenlandicum) at four sites in northern Minnesota, USA. To characterize the specific influence of host co-occurrence on mycorrhizal fungal community structure, we also conducted a greenhouse bioassay using the same three hosts. Root samples were assessed using Illumina-based high-throughput sequencing (HTS) of the ITS1 rRNA gene region. As expected, we found that the relative abundance of ectomycorrhizal fungi was high on both Larix and Picea, whereas ericoid mycorrhizal fungi had high relative abundance only on Ledum. Ericoid mycorrhizal fungal richness was significantly higher in mature forests, in bogs, and on Ledum hosts, while ectomycorrhizal fungal richness did not differ significantly across any of these three variables. In terms of community composition, ericoid mycorrhizal fungi were more strongly influenced by host while ectomycorrhizal fungi were more influenced by habitat. In the greenhouse bioassay, the presence of Ledum had consistently stronger effects on the composition of ectomycorrhizal, ericoid, and ericoid-ectomycorrhizal fungal communities than either Larix or Picea. Collectively, these results suggest that partitioning HTS-based datasets by mycorrhizal type in boreal peatland forests is important, as their responses to rapidly changing environmental conditions are not likely to be uniform.


Assuntos
Florestas , Larix/microbiologia , Ledum/microbiologia , Micorrizas/fisiologia , Picea/microbiologia , Áreas Alagadas , Código de Barras de DNA Taxonômico , Minnesota
9.
Mol Ecol ; 26(7): 2063-2076, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27761941

RESUMO

Recent advancements in sequencing technology allowed researchers to better address the patterns and mechanisms involved in microbial environmental adaptation at large spatial scales. Here we investigated the genomic basis of adaptation to climate at the continental scale in Suillus brevipes, an ectomycorrhizal fungus symbiotically associated with the roots of pine trees. We used genomic data from 55 individuals in seven locations across North America to perform genome scans to detect signatures of positive selection and assess whether temperature and precipitation were associated with genetic differentiation. We found that S. brevipes exhibited overall strong population differentiation, with potential admixture in Canadian populations. This species also displayed genomic signatures of positive selection as well as genomic sites significantly associated with distinct climatic regimes and abiotic environmental parameters. These genomic regions included genes involved in transmembrane transport of substances and helicase activity potentially involved in cold stress response. Our study sheds light on large-scale environmental adaptation in fungi by identifying putative adaptive genes and providing a framework to further investigate the genetic basis of fungal adaptation.


Assuntos
Adaptação Fisiológica/genética , Agaricales/genética , Genética Populacional , Seleção Genética , Basidiomycota/genética , Canadá , Clima , Resposta ao Choque Frio/genética , DNA Fúngico/genética , Genoma Fúngico , Genótipo , Desequilíbrio de Ligação , Micorrizas/genética , América do Norte , Pinus/microbiologia , Chuva , Neve , Temperatura
10.
Glob Chang Biol ; 23(4): 1598-1609, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27658686

RESUMO

Rising temperatures associated with climate change have been shown to negatively affect the photosynthetic rates of boreal forest tree saplings at their southern range limits. To quantify the responses of ectomycorrhizal (EM) fungal communities associated with poorly performing hosts, we sampled the roots of Betula papyrifera and Abies balsamea saplings growing in the B4Warmed (Boreal Forest Warming at an Ecotone in Danger) experiment. EM fungi on the root systems of both hosts were compared from ambient and +3.4 °C air and soil warmed plots at two sites in northern Minnesota. EM fungal communities were assessed with high-throughput sequencing along with measures of plant photosynthesis, soil temperature, moisture, and nitrogen. Warming selectively altered EM fungal community composition at both the phylum and genus levels, but had no significant effect on EM fungal operational taxonomic unit (OTU) diversity. Notably, warming strongly favored EM Ascomycetes and EM fungi with short-contact hyphal exploration types. Declining host photosynthetic rates were also significantly inversely correlated with EM Ascomycete and EM short-contact exploration type abundance, which may reflect a shift to less carbon demanding fungi due to lower photosynthetic capacity. Given the variation in EM host responses to warming, both within and between ecosystems, better understanding the link between host performance and EM fungal community structure will to clarify how climate change effects cascade belowground.


Assuntos
Mudança Climática , Microbiologia do Solo , Abies , Betula , Ecossistema , Florestas , Micorrizas , Taiga , Árvores
11.
Mol Ecol ; 25(16): 4032-46, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27284759

RESUMO

Exploring the link between above- and belowground biodiversity has been a major theme of recent ecological research, due in large part to the increasingly well-recognized role that soil microorganisms play in driving plant community processes. In this study, we utilized a field-based tree experiment in Minnesota, USA, to assess the effect of changes in plant species richness and phylogenetic diversity on the richness and composition of both ectomycorrhizal and saprotrophic fungal communities. We found that ectomycorrhizal fungal species richness was significantly positively influenced by increasing plant phylogenetic diversity, while saprotrophic fungal species richness was significantly affected by plant leaf nitrogen content, specific root length and standing biomass. The increasing ectomycorrhizal fungal richness associated with increasing plant phylogenetic diversity was driven by the combined presence of ectomycorrhizal fungal specialists in plots with both gymnosperm and angiosperm hosts. Although the species composition of both the ectomycorrhizal and saprotrophic fungal communities changed significantly in response to changes in plant species composition, the effect was much greater for ectomycorrhizal fungi. In addition, ectomycorrhizal but not saprotrophic fungal species composition was significantly influenced by both plant phylum (angiosperm, gymnosperm, both) and origin (Europe, America, both). The phylum effect was caused by differences in ectomycorrhizal fungal community composition, while the origin effect was attributable to differences in community heterogeneity. Taken together, this study emphasizes that plant-associated effects on soil fungal communities are largely guild-specific and provides a mechanistic basis for the positive link between plant phylogenetic diversity and ectomycorrhizal fungal richness.


Assuntos
Biodiversidade , Micorrizas/classificação , Microbiologia do Solo , Árvores/microbiologia , Cycadopsida/microbiologia , Magnoliopsida/microbiologia , Minnesota , Filogenia
12.
Mycologia ; 108(6): 1216-1228, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27760855

RESUMO

The genus Suillus represents one of the most recognizable groups of mushrooms in conifer forests throughout the Northern Hemisphere. Although for decades the genus has been relatively well defined morphologically, previous molecular phylogenetic assessments have provided important yet preliminary insights into its evolutionary history. We present the first large-scale phylogenetic study of the boundaries of each species in the genus Suillus based on the most current internal transcribed spacer (ITS) barcode sequences available inPUBLIC databases, as well as sequencing of 224 vouchered specimens and cultures, 15 of which were type specimens from North America. We found that species boundaries delimited by morphological data are broadly congruent with those based on ITS sequences. However, some species appear to have been described several times under different names, several species groups cannot be resolved by ITS sequences alone, and undescribed taxa are apparent, especially in Asia. Therefore, we elevated S. tomentosus var. discolor to S. discolor; proposed synonymies of S. neoalbidipes with S. glandulosipes, S. borealis with S. brunnescens, Boletus serotinus and B. solidipes with Suillus elbensis, S. lactifluus with S. granulatus, S. himalayensis with S. americanus; and proposed usage of the names S. clintonianus in the place of the North American S. grevillei, S. weaverae for North American S. granulatus, S. ampliporus in the place of the North American S. cavipes, and S. elbensis in place of the North American S. viscidus. We showed that the majority of Suillus species have strong affinities for particular host genera. Although deep node support was low, geographic differentiation was apparent, with species from North America, Eurasia, and Asia often forming their own clades. Collectively, this comprehensive genus-level phylogenetic integration of currently available Suillus ITS molecular data and metadata will aid future taxonomic and ecological work on an important group of ectomycorrhizal fungi.


Assuntos
Basidiomycota/classificação , Basidiomycota/genética , Filogeografia , América , Ásia , Código de Barras de DNA Taxonômico , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , América do Norte
13.
Appl Environ Microbiol ; 82(5): 1391-1400, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26682855

RESUMO

In temperate and boreal forest ecosystems, nitrogen (N) limitation of tree metabolism is alleviated by ectomycorrhizal (ECM) fungi. As forest soils age, the primary source of N in soil switches from inorganic (NH4 (+) and NO3 (-)) to organic (mostly proteins). It has been hypothesized that ECM fungi adapt to the most common N source in their environment, which implies that fungi growing in older forests would have greater protein degradation abilities. Moreover, recent results for a model ECM fungal species suggest that organic N uptake requires a glucose supply. To test the generality of these hypotheses, we screened 55 strains of 13 Suillus species with different ecological preferences for their in vitro protein degradation abilities. Suillus species preferentially occurring in mature forests, where soil contains more organic matter, had significantly higher protease activity than those from young forests with low-organic-matter soils or species indifferent to forest age. Within species, the protease activities of ecotypes from soils with high or low soil organic N content did not differ significantly, suggesting resource partitioning between mineral and organic soil layers. The secreted protease mixtures were strongly dominated by aspartic peptidases. Glucose addition had variable effects on secreted protease activity; in some species, it triggered activity, but in others, activity was repressed at high concentrations. Collectively, our results indicate that protease activity, a key ectomycorrhizal functional trait, is positively related to environmental N source availability but is also influenced by additional factors, such as carbon availability.


Assuntos
Basidiomycota/metabolismo , Micorrizas/metabolismo , Nitrogênio/análise , Compostos Orgânicos/análise , Peptídeo Hidrolases/metabolismo , Proteólise , Solo/química , Basidiomycota/enzimologia , Glucose/metabolismo , Micorrizas/enzimologia
14.
Microb Ecol ; 69(4): 914-21, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25687126

RESUMO

Bacteria have been observed to grow with fungi, and those that associate with ectomycorrhizal fungi have often been thought of as symbionts that may either increase or decrease ectomycorrhizal formation rate or provide other unaccounted benefits. To explore this symbiosis from a community ecology perspective, we sampled ectomycorrhizal root tips over a 3-year period and used 454 pyrosequencing to identify the bacteria that live inside the ectomycorrhizal root tips. The results showed that fungal community composition within the same soil core and fungal taxonomic identity had a stronger effect on bacterial community composition than sample year or site. Members of the Burkholderiales and Rhizobiales were most highly represented, reflecting many previous reports of these bacteria in association with fungi. The repeated occurrences of these two bacterial orders suggest that they may be symbiotic with their fungal hosts, although the nature of such mechanisms, be it symbiotic diazotrophy or otherwise, remains to be thoroughly tested.


Assuntos
Burkholderia/fisiologia , Fungos/fisiologia , Microbiota , Micorrizas/genética , Pinus/microbiologia , Microbiologia do Solo , Burkholderia/genética , Fungos/genética , Reação em Cadeia da Polimerase , Simbiose
15.
Mol Ecol ; 22(21): 5271-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24112409

RESUMO

The nuclear ribosomal internal transcribed spacer (ITS) region is the formal fungal barcode and in most cases the marker of choice for the exploration of fungal diversity in environmental samples. Two problems are particularly acute in the pursuit of satisfactory taxonomic assignment of newly generated ITS sequences: (i) the lack of an inclusive, reliable public reference data set and (ii) the lack of means to refer to fungal species, for which no Latin name is available in a standardized stable way. Here, we report on progress in these regards through further development of the UNITE database (http://unite.ut.ee) for molecular identification of fungi. All fungal species represented by at least two ITS sequences in the international nucleotide sequence databases are now given a unique, stable name of the accession number type (e.g. Hymenoscyphus pseudoalbidus|GU586904|SH133781.05FU), and their taxonomic and ecological annotations were corrected as far as possible through a distributed, third-party annotation effort. We introduce the term 'species hypothesis' (SH) for the taxa discovered in clustering on different similarity thresholds (97-99%). An automatically or manually designated sequence is chosen to represent each such SH. These reference sequences are released (http://unite.ut.ee/repository.php) for use by the scientific community in, for example, local sequence similarity searches and in the QIIME pipeline. The system and the data will be updated automatically as the number of public fungal ITS sequences grows. We invite everybody in the position to improve the annotation or metadata associated with their particular fungal lineages of expertise to do so through the new Web-based sequence management system in UNITE.


Assuntos
Bases de Dados de Ácidos Nucleicos , Fungos/classificação , Filogenia , Código de Barras de DNA Taxonômico , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Fungos/genética , Internet
16.
Mycologia ; 105(5): 1275-86, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23709487

RESUMO

Based on morphology, fungal species have been considered widespread and as a result names of species from Europe or eastern North America were applied to species in western North America. However, DNA sequences have shown that many western taxa are different from their European counterparts; one such case is presented here. Comparisons of ITS and LSU rDNA sequences from ectomycorrhizal root tips and ascomata of specimens identified as Helvella lacunosa from North America, Europe and Asia revealed that the taxa from western North America and Mexico formed a well supported clade different from the eastern North American, European and Asian taxa. Within this western North American clade there are at least four taxa. Here we describe two of these western taxa as new species: Helvella vespertina and Helvella dryophila. Helvella vespertina is a bigger version of H. lacunosa, is variable in hymenial color and shape and forms ectomycorrhizae with conifers; it fruits typically Oct-Jan. Helvella dryophila is characterized by a dark almost black, squat pileus, a light stipe when young, medium size and forms ectomycorrhizae with Quercus species; it fruits Jan-Jun. Due to insufficient material, the two other Helvella taxa are discussed but not formally described here. We also examined the Hypomyces and other mycoparasites associated with the ascomata of Helvella species and discuss misleadingly labeled sequences in public databases.


Assuntos
Ascomicetos/classificação , Quercus/microbiologia , Ascomicetos/citologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ásia , Sequência de Bases , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Europa (Continente) , México , Dados de Sequência Molecular , Micorrizas , América do Norte , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , Esporos Fúngicos
17.
Microbiol Spectr ; : e0470822, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36939352

RESUMO

Mat-forming fungi are common in forest and grassland soils across the world, where their activity contributes to important soil ecological processes. These fungi maintain dominance through aggressive and abundant hyphae that modify their internal physical and chemical environments and through these modifications select for what appears to be a suite of mycophilic bacteria. Here, the bacteria associated with the fungal mats of Leucopaxillus gentianeus and Leucopaxillus albissimus from western North America are compared to adjacent nonmat substrates. Within the mats, the bacterial richness and diversity were significantly reduced, and the community composition was significantly different. The bacterial community structure between the two fungal hosts was marginally significant and indicated a shared set of bacterial associates. The genera Burkholderia, Streptomyces, Bacillus, Paenibacillus, and Mycobacterium were significantly abundant within the fungal mats and represent core members of these hypha-rich environments. Comparison with the literature from fungal mat studies worldwide showed that these genera are common and often significantly found within fungal mats, further reinforcing the concept of a mycophilic bacterial guild. These genera are incorporated into a synthesis discussion in the context of our current understanding of the nature of fungal-bacterial interactions and the potential outcomes of these interactions in soil nutrient cycling, plant productivity, and human health. IMPORTANCE Fungi and bacteria are the most abundant and diverse organisms in soils (perhaps more so than any other habitat on earth), and together these microorganisms contribute to broad soil ecosystem processes. There is a suite of bacteria that appears consistently within the physical space called the hyphosphere, the area of influence surrounding fungal hyphae. How these bacteria are selected for, how they are maintained, and what broader ecological functions they perform are subjects of interest in this relatively new field-the cross-kingdom interactions between fungi and bacteria. Understanding their cooccurrence and their interactions can open new realms of understanding in soil ecological processes with global consequences.

18.
PLoS One ; 18(9): e0291250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37695782

RESUMO

Legumes and their interaction with rhizobia represent one of the most well-characterized symbioses that are widespread across both natural and agricultural environments. However, larger distribution patterns and host associations on isolated Pacific islands with many native and introduced hosts have not been well-documented. Here, we used molecular and culturing techniques to characterize rhizobia from soils and 24 native and introduced legume species on the island of O'ahu, Hawai'i. We chose two of these isolates to inoculate an endemic legume tree, Erythina sandwicensis to measure nodulation potentials and host benefits. We found that all rhizobia genera can be found in the soil, where only Cupriavidus was found at all sites, although at lower abundance relative to other more common genera such as Rhizobium (and close relatives), Bradyzhizobium, and Devosia. Bradyrhizobium was the most common nodulator of legumes, where the strain Bradyrhizobium sp. strain JA1 is a generalist capable of forming nodules on nine different host species, including two native species. In greenhouse nursery inoculations, the two different Bradyrhizobium strains successfully nodulate the endemic E. sandwicensis; both strains equally and significantly increased seedling biomass in nursery inoculations. Overall, this work provides a molecular-based framework in which to study potential native and introduced rhizobia on one of the most isolated archipelagos on the planet.


Assuntos
Bradyrhizobium , Fabaceae , Rhizobium , Havaí , Solo , Verduras , Bradyrhizobium/genética , Espécies Introduzidas , Rhizobium/genética
19.
Genetics ; 224(2)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37070772

RESUMO

Studying the signatures of evolution can help to understand genetic processes. Here, we demonstrate how the existence of balancing selection can be used to identify the breeding systems of fungi from genomic data. The breeding systems of fungi are controlled by self-incompatibility loci that determine mating types between potential mating partners, resulting in strong balancing selection at the loci. Within the fungal phylum Basidiomycota, two such self-incompatibility loci, namely HD MAT locus and P/R MAT locus, control mating types of gametes. Loss of function at one or both MAT loci results in different breeding systems and relaxes the MAT locus from balancing selection. By investigating the signatures of balancing selection at MAT loci, one can infer a species' breeding system without culture-based studies. Nevertheless, the extreme sequence divergence among MAT alleles imposes challenges for retrieving full variants from both alleles when using the conventional read-mapping method. Therefore, we employed a combination of read-mapping and local de novo assembly to construct haplotypes of HD MAT alleles from genomes in suilloid fungi (genera Suillus and Rhizopogon). Genealogy and pairwise divergence of HD MAT alleles showed that the origins of mating types predate the split between these two closely related genera. High sequence divergence, trans-specific polymorphism, and the deeply diverging genealogy confirm the long-term functionality and multiallelic status of HD MAT locus in suilloid fungi. This work highlights a genomics approach to studying breeding systems regardless of the culturability of organisms based on the interplay between evolution and genetics.


Assuntos
Basidiomycota , Evolução Molecular , Melhoramento Vegetal , Basidiomycota/genética , Genômica , Polimorfismo Genético , Genes Fúngicos Tipo Acasalamento/genética , Filogenia , Fungos/genética
20.
Mol Ecol ; 21(16): 4122-36, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22703050

RESUMO

Dispersal plays a prominent role in most conceptual models of community assembly. However, direct measurement of dispersal across a whole community is difficult at ecologically relevant spatial scales. For cryptic organisms, such as fungi and bacteria, the scale and importance of dispersal limitation has become a major point of debate. We use an experimental island biogeographic approach to measure the effects of dispersal limitation on the ecological dynamics of an important group of plant symbionts, ectomycorrhizal fungi. We manipulated the isolation of uncolonized host seedlings across a natural landscape and used a range of molecular techniques to measure the dispersal rates of ectomycorrhizal propagules and host colonization. Some species were prolific dispersers, producing annual spore loads on the order of trillions of spores per km(2). However, fungal propagules reaching host seedlings decreased rapidly with increasing distance from potential spore sources, causing a concomitant reduction in ectomycorrhizal species richness, host colonization and host biomass. There were also strong differences in dispersal ability across species, which correlated well with the predictable composition of ectomycorrhizal communities associated with establishing pine forest. The use of molecular tools to measure whole community dispersal provides a direct confirmation for a key mechanism underlying island biogeography theory and has the potential to make microbial systems a model for understanding the role of dispersal in ecological theory.


Assuntos
Micorrizas/fisiologia , Dispersão Vegetal , Árvores/microbiologia , California , Variação Genética , Modelos Estatísticos , Dados de Sequência Molecular , Pinus/microbiologia , Dispersão Vegetal/genética , Plântula/microbiologia , Esporos Fúngicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA