Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biodivers ; : e202400864, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38699953

RESUMO

Pinostrobin demonstrated anticancer properties, but its hydrophobic feature led to a reduction in bioavailability. The mitochondria-targeted approach successfully synthesized eight new alkyl triphenylphosphonium pinostrobin derivatives (1-8) with good yield in this study. Seven compounds (1-3, 5-8) showed greater cytotoxic potency against the human MCF-7 breast cancer cell line than pinostrobin. Molecular docking studies were performed with two important targets in hormone-dependent anticancer strategies, estrogen receptor α (ERα) ligand binding domains, 3ERT (antagonist recognition and antiproliferative function), and 1GWR (agonist recognition and pro-proliferative function). In addition, the MD simulation study of the two most potent compounds (2 and 3) complexed with both ERα forms suggested that compounds 2 and 3 could serve as favourable antagonists. Furthermore, the in silico ADMET prediction indicated that compounds 2 and 3 could be potential drug candidates.

2.
Anal Chem ; 89(3): 2057-2064, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28208291

RESUMO

Current high-throughput approaches evaluating toxicity of chemical agents toward bacteria typically rely on optical assays, such as luminescence and absorbance, to probe the viability of the bacteria. However, when applied to toxicity induced by nanomaterials, scattering and absorbance from the nanomaterials act as interferences that complicate quantitative analysis. Herein, we describe a bacterial viability assay that is free of optical interference from nanomaterials and can be performed in a high-throughput format on 96-well plates. In this assay, bacteria were exposed to various materials and then diluted by a large factor into fresh growth medium. The large dilution ensured minimal optical interference from the nanomaterial when reading optical density, and the residue left from the exposure mixture after dilution was confirmed not to impact the bacterial growth profile. The fractions of viable cells after exposure were allowed to grow in fresh medium to generate measurable growth curves. Bacterial viability was then quantitatively correlated to the delay of bacterial growth compared to a reference regarded as 100% viable cells; data analysis was inspired by that in quantitative polymerase chain reactions, where the delay in the amplification curve is correlated to the starting amount of the template nucleic acid. Fast and robust data analysis was achieved by developing computer algorithms carried out using R. This method was tested on four bacterial strains, including both Gram-negative and Gram-positive bacteria, showing great potential for application to all culturable bacterial strains. With the increasing diversity of engineered nanomaterials being considered for large-scale use, this high-throughput screening method will facilitate rapid screening of nanomaterial toxicity and thus inform the risk assessment of nanoparticles in a timely fashion.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Ensaios de Triagem em Larga Escala/métodos , Nanoestruturas/toxicidade , Shewanella/efeitos dos fármacos , Shewanella/crescimento & desenvolvimento , Testes de Toxicidade/métodos , Algoritmos , Antibacterianos/farmacologia , Automação , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase/métodos
3.
Nat Prod Res ; : 1-9, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38088052

RESUMO

This study presents a phytochemical analysis of the leaves of Paramignya trimera, revealing the isolation of a new apotirucallane-type protolimonoid, identified as 25-O-methyl-1,2-dihydroprotoxylocarpin D (1), along with two known compounds (2 and 3). The known compounds were identified as (20S,21R,23R)-21,23-epoxy-7α,24,25-trihydroxy-21-O-methyl-3-oxoapotirucalla-14-ene (2) and 7α,24,25-trihydroxy-3-oxoapotirucalla-14-en-21,23-olide (3). The three apotirucallane-type protolimonoids (1-3) did not exhibit cytotoxicity against MCF-7 cells at a concentration of 100 µM. Interestingly, when MCF-7 cells were treated with compound 1 at various concentrations, a notable stimulatory response was observed, leading to a significant increase in cell viability, up to 127%.

4.
ADMET DMPK ; 11(4): 551-560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937241

RESUMO

Background and Purpose: The utilization of doxorubicin (DOX) in clinal trials is also challenging owing to its adverse effects, including low oral bioavailability, generation of reactive oxygen species (ROS), cardiotoxicity, and epithelial barrier damage. Recently, scavenging of ROS reduced the cytotoxicity of DOX, suggesting a new approach for using DOX as an anticancer treatment. Thus, in this study, non-silica and silica redox nanoparticles (denoted as RNPN and siRNP, respectively) with ROS scavenging features have been designed to encapsulate DOX and reduce its cytotoxicity. Experimental Approach: DOX-loaded RNPN (DOX@RNPN) and DOX-loaded siRNP (DOX@siRNP) were prepared by co-dissolving DOX with RNPN and siRNP, respectively. The size and stability of nanoparticles were characterized by the dynamic light scattering system. Additionally, encapsulation efficiency, loading capacity, and release profile of DOX@RNPN and DOX@siRNP were identified by measuring the absorbance of DOX. Finally, the cytotoxicity of DOX@RNPN and DOX@siRNP against normal murine fibroblast cells (L929), human hepatocellular carcinoma cells (HepG2), and human breast cancer cells (MCF-7) were also investigated. Key results: The obtained result showed that RNPN exhibited a pH-sensitive character while silanol moieties improved the stability of siRNP in physiological conditions. DOX@RNPN and DOX@siRNP were formed at several tens of nanometers in diameter with narrow distribution. Moreover, DOX@siRNP stabilized under different pH buffers, especially gastric pH, and improved encapsulation of DOX owing to the addition of silanol groups. DOX@RNPN and DOX@siRNP maintained anticancer activity of DOX against HepG2, and MCF-7 cells, while their cytotoxicity on L929 cells was significantly reduced compared to free DOX treatment. Conclusion: DOX@RNPN and DOX@siRNP could effectively suppress the adverse effect of DOX, suggesting the potential to become promising nanomedicines for cancer treatments.

5.
J Control Release ; 331: 515-524, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33616078

RESUMO

Chronic inflammatory diseases such as inflammatory bowel diseases (IBD), which are strongly related to the overproduction of reactive oxygen species (ROS), have become more threatening to health. Silymarin is an active compound with the effect of expressing anti-inflammatory activity; however, it exhibits poor bioavailability due to the rapid metabolism and secretion, low permeability across the intestinal epithelial cells, and poor water solubility. In this study, we developed silica-containing redox nanoparticles (siRNP) with 50-60 nm in diameter to improve the bioavailability of silymarin by improving its uptake into the bloodstream and delivery to the targeted tissues of the colon. Silymarin-loaded siRNP (SM@siRNP) significantly increased the antioxidant capacity and anti-inflammatory efficacy in vitro by scavenging 2,2-diphenyl-1-picrylhydrazyl free radical and suppressing nitric oxide and pro-inflammatory cytokines as compared to the other treatments such as free silymarin, siRNP, and silymarin-loaded si-nRNP (the control nanoparticle without ROS scavenging property). Orally administered SM@siRNP significantly improved the bioavailability of silymarin and its retention in the colonic mucosa. The anti-inflammatory effects of SM@siRNP were also investigated in dextran sodium sulfate (DSS)-induced colitis in mice and it was observed that SM@siRNP treatment significantly improved the damage in the colonic mucosa of DSS colitis mice as compared to the other treatments. The results in this study indicate that SM@siRNP is a promising nanomedicine for enhancing the anti-inflammatory activity of silymarin and has a high potential for the treatment of IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Nanopartículas , Silimarina , Animais , Disponibilidade Biológica , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/metabolismo , Camundongos , Oxirredução , Dióxido de Silício/metabolismo , Silimarina/metabolismo
6.
Mater Sci Eng C Mater Biol Appl ; 127: 112232, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34225873

RESUMO

Biodegradable periodic mesoporous organosilica nanoparticles (B-PMO) are an outstanding nanocarrier due to their biodegradability and high drug load capacities. The present study describes a synthesis of a phenylene-containing tetrasulfide based B-PMO, named P4S. The incorporation of aromatic phenylene groups into the framework creates a strong interaction between nanoparticles (NPs) with aromatic rings in the cordycepin molecules. This results in the low release profile under various conditions. In addition, the replacement of this linker slowed the degradation of nanoparticles. The physicochemical properties of the nanoparticles are evaluated and compared with a biodegradable ethane-containing tetrasulfide based PMO and a non-degradable MCM-41. The biodegradability of P4S is also demonstrated in a reducing environment and the 100 nm spherical nanoparticles completely decomposed within 14 days. The porous structure of P4S has a high loading of hydrophilic cordycepin (approximately 731.52 mg g-1) with a slow releasing speed. The release rates of P4S NPs are significantly lower than other materials, such as liposomes, gelatin nanoparticles, and photo-crosslinked hyaluronic acid methacrylate hydrogels, in the same solution. This specific release behavior could guarantee drug therapeutic effects with minimum side-effects and optimized drug dosages. Most importantly, according to the in vitro cytotoxicity study, cordycepin-loaded P4S NPs could retain the toxicity against liver cancer cell (HepG2) while suppressed the cytotoxicity against normal cells (BAEC).


Assuntos
Nanopartículas , Portadores de Fármacos , Hidrogéis , Interações Hidrofóbicas e Hidrofílicas , Porosidade , Dióxido de Silício
7.
Bioresour Technol ; 292: 121953, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31405625

RESUMO

Over the past decade, the number of original articles and reviews presenting microalgae as a promising feedstock for biodiesel has increased tremendously. Many improvements of microalgae have been achieved through selection and strain development for industrial applications. However, the large-scale production of lipids for commercialization is not yet realistic because the production is still much more expensive than that of agricultural products. This review summarizes recent research on the induction of lipid biosynthesis in microalgae and the various strategies of genetic and metabolic engineering for enhancing lipid production. Strain engineering targets are proposed based on these strategies. To address current limitations of strain engineering for lipid production, this review provides insights on recent engineering strategies based on molecular tools and methods, and also discusses further perspectives.


Assuntos
Microalgas , Biocombustíveis , Biotecnologia , Lipídeos , Engenharia Metabólica
8.
Bioresour Technol ; 271: 368-374, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30293032

RESUMO

Biofuel derived from microalgae have several advantages over other oleaginous crops, however, still needs to be improved with its cost aspect and can be achieved by developing of a strain with improved lipid productivity. In this study, the CRISPR-Cas9 system was incorporated to carry out a target-specific knockout of the phospholipase A2 gene in Chlamydomonas reinhardtii. The targeted gene encodes a key enzyme in the Lands cycle. As a result, the mutants showed a characteristic of increased diacylglycerol pool, followed by a higher accumulation of triacylglycerol without being significantly compensated with the cell growth. As a result, the overall lipid productivities of phospholipase A2 knockout mutants have increased by up to 64.25% (to 80.92 g L-1 d-1). This study can provide crucial information for the biodiesel industry.


Assuntos
Biocombustíveis/microbiologia , Chlamydomonas reinhardtii/metabolismo , Lipídeos/biossíntese , Fosfolipases A2/metabolismo , Chlamydomonas reinhardtii/genética , Fosfolipases A2/deficiência , Triglicerídeos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA