Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(26): 12027-12041, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897627

RESUMO

Semiconductor materials based on bismuth metal have been extensively explored for their potential in photocatalytic applications owing to their distinctive crystal structure. Herein, we present the development of a hybrid photocatalyst, CAU-17/BiOCl, featuring a flower-like nanosheet morphology tailored for the photocatalytic degradation of organic contaminants such as rhodamine B (RhB) and tetracycline hydrochloride (TCH). The composite material is obtained by growing thin CAU-17 layers directly onto the host flower-like BiOCl nanosheets under solvothermal conditions. The optimized CAU-17/BiOCl composite possesses excellent photocatalytic performance, achieving a notable 96.0% removal rate for RhB and 78.4% for TCH after 60 and 90 min of LED light irradiation, respectively. This boosted activity is attributed to the heightened absorption of visible light caused by BiOCl and the provision of additional reaction sites due to the thin CAU-17 layers. Furthermore, the establishment of an S-scheme heterojunction mechanism enables efficient charge separation between CAU-17 and BiOCl, facilitating the separation of photoinduced electrons (e-) and holes (h+). Analysis of the degradation mechanism of RhB and TCH reveals the predominant role of superoxide radicals (•O2-), e-, and h+ in the photocatalytic degradation process. Moreover, the removal efficiency of TCH can reach approximately 64.5% after four cycles of recycling of CAU-17/BiOCl. Our work provides a facile, effective solution and a theoretically explained approach for the effective degradation of pollutants using heterojunction photocatalysts.

2.
J Nanosci Nanotechnol ; 19(2): 1148-1150, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30360221

RESUMO

We report the facial synthesis of Eu-doped MIL-53(Fe) elongated hexagonal dipyramid by solvothermal reaction of Fe(NO3)3, Eu(NO3)3 and terephthalic acid (TPA) in the presence of N,N-dimethylformamide (DMF). The as-synthesized samples were characterized by XRD, Raman, FT-IR, PL, and SEM. From XRD and Raman results, metal replacement (Eu) with the metal ion (Fe) in the crystal lattice may change the high crystallinity of the MIL-53(Fe) structure, and all the metal ions were incorporated into the structures of MIL-53(Fe) as well as replaced Fe ion or located at interstitial site. From PL result, Eu-doped MIL-53(Fe) showed unique Eu fluorescence properties with high emission intensity, thus enabling it to be a promising functional probe for fluorescent imaging.

3.
Chemosphere ; 357: 142114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663679

RESUMO

The designed synthesis of an S-scheme heterojunction has possessed a great potential for improving photocatalytic wastewater treatment by demonstrating increased the photoredox capacity and improved the charge separation efficiency. Here, we introduce the fabrication of a heterojunction-based photocatalyst comprising bismuth oxychloride (BiOCl) and bismuth-based halide perovskite (BHP) nanosheets, derived from metal-organic frameworks (MOFs). Our composite photocatalyst is synthesized through a one-pot solvothermal strategy, where a halogenation process is applied to a bismuth-based metal-organic framework (CAU-17) as the precursor for bismuth sourcing. As a result, the rod-like structure of CAU-17 transforms into well-defined plate and nanosheet architectures after 4 and 8 h of solvothermal treatment, respectively. The modulation of the solvothermal reaction time facilitates the establishment of an S-scheme heterojunction, resulting in an increase in the photocatalytic degradation efficiency of rhodamine B (RhB) and sulfamethoxazole (SMX). The optimized BiOCl/BHP composite exhibits superior RhB and SMX degradation rates, achieving 99.8% degradation of RhB in 60 min and 75.1% degradation of SMX in 300 min. Also, the optimized BiOCl/BHP composite (CAU-17-st-8h sample) exhibited the highest rate constant (k = 3.48 × 10-3 min-1), nearly 6 times higher than that of the bare BHP in the photocatalytic degradation process of SMX. The enhanced photocatalytic efficiency can be endorsed to various factors: (i) the in-situ formation of two-components BiOCl/BHP photocatalyst, derived from CAU-17, effectively suppresses the aggregation of pristine BHP and BiOCl particles; (ii) the S-scheme heterostructure establishes a closely-knit interfacial connection, thereby facilitating efficient pathways for charge separation/transfer; and (iii) the BiOCl/BHP heterostructure enhances its capacity to absorb visible light. Our investigation establishes an effective strategy for constructing heterostructured photocatalysts, offering significant potential for application in photocatalytic wastewater treatment.


Assuntos
Bismuto , Compostos de Cálcio , Estruturas Metalorgânicas , Óxidos , Rodaminas , Titânio , Poluentes Químicos da Água , Bismuto/química , Titânio/química , Compostos de Cálcio/química , Óxidos/química , Catálise , Poluentes Químicos da Água/química , Estruturas Metalorgânicas/química , Rodaminas/química , Fotólise , Águas Residuárias/química , Processos Fotoquímicos
4.
RSC Adv ; 12(39): 25377-25387, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199332

RESUMO

In this study, g-C3N4/UU-200 heterojunction photocatalysts displaying superior photocatalytic activity for organic pollutant elimination under white LED light irradiation were fabricated via an in situ solvothermal method. The successful construction of a heterojunction between g-C3N4 and UU-200 was evidenced by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The improved photocatalytic degradation of rhodamine B (RhB) and tetracycline hydrochloride (TCH) over g-C3N4/UU-200 compared with that over the individual components can be attributed to the anchoring of the g-C3N4 layered structure on the UU-200 surface promoting the decrease of the bandgap of UU-200, as confirmed by ultraviolet-visible diffuse reflectance spectroscopy, and to the light-induced charge separation efficiency stemming from a suitable heterojunction structure, which was revealed by photoluminescence spectroscopy and electrochemical analyses. Specifically, the 40% g-C3N4/UU-200 composite showed the highest photocatalytic activity toward the degradation of RhB (97.5%) within 90 min and TCH (72.6%) within 180 min. Furthermore, this catalyst can be recycled four runs, which demonstrates the potential of the g-C3N4/UU-200 composite as an alternative visible-light-sensitive catalyst for organic pollutant elimination.

5.
R Soc Open Sci ; 6(5): 190058, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31218048

RESUMO

Herein, we described a tunable method for synthesis of novel hollow mesoporous carbon (MPC) via direct pyrolysis (800oC) of MIL-53 (Fe) as a self-sacrificed template. The structural characterization revealed a hollow, amorphous, defective and mesoporous MPC along with high surface area (approx. 200 m2 g-1). For the experiments of ibuprofen adsorption onto MPC, effects of contact time, MPC dosage, ionic strength, concentration and temperature were systematically investigated. The optimal conditions consisted of pH = 3, concentration 10 mg l-1 and dose of 0.1 g l-1 for the highest ibuprofen removal efficiency up to 88.3% after 4 h. Moreover, adsorption behaviour, whereby chemisorption and monolayer controlled the uptake of ibuprofen over MPC, were assumed. Adsorption mechanisms including H-bonding, π-π interaction, metal-oxygen, electrostatic attraction were rigorously proposed. In comparison to several studies, the MPC nanocomposite in this work obtained the outstanding maximum adsorption capacity (206.5 mg g-1) and good reusability (5 cycles); thus, it can be used as a feasible alternative for decontamination of ibuprofen anti-inflammatory drug from water.

6.
Materials (Basel) ; 12(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443413

RESUMO

In this study, we investigated sulfate-modified BiVO4 with the high photocatalytic activity synthesized by a sol-gel method in the presence of thiourea, followed by the annealing process at different temperatures. Its structure was characterized by thermal gravimetric analysis (TGA), powder X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The BiVO4 synthesized in the presence of thiourea and calcined at 600 °C (T-BVO-600) exhibited the highest photocatalytic degradation efficiency of methylene blue (MB) in water; 98.53% MB removal was achieved within 240 min. The reaction mechanisms that affect MB photocatalytic degradation on the T-BVO-600 were investigated via an indirect chemical probe method, using chemical agents to capture the active species produced during the early stages of photocatalysis, including 1,4-benzoquinone (scavenger for O2-), ethylenediaminetetraacetic acid disodium salt (scavenger for h+), and tert-butanol (scavenger for HO•). The results show that holes (h+) and hydroxyl radicals (HO•) are the dominant species of MB decomposition. Photoluminescence (PL) measurement results of terephthalic acid solutions in the presence of BiVO4 samples and BiVO4 powders confirm the involvement of hydroxyl radicals and the separation efficiency of electron-hole pairs in MB photocatalytic degradation. Besides, the T-BVO-600 exhibits good recyclability for MB removal, achieving a removal rate of above 83% after five cycles. The T-BVO-600 has the features of high efficiency and good recyclability for MB photocatalytic degradation. These results provide new insight into the purpose of improving the photocatalytic activity of BiVO4 catalyst.

7.
Hum Vaccin Immunother ; 10(10): 2843-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483637

RESUMO

Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes fatal acute lung infections in critically ill individuals. Its pathogenesis is associated with bacterial virulence conferred by the type III secretion system (TTSS), through which P. aeruginosa causes necrosis of the lung epithelium and disseminates into the circulation, resulting in bacteremia, sepsis, and mortality. TTSS allows P. aeruginosa to directly translocate cytotoxins into eukaryotic cells, inducing cell death. The P. aeruginosa V-antigen PcrV, a homolog of the Yersinia V-antigen LcrV, is an indispensable contributor to TTS toxin translocation. Vaccination against PcrV ensures the survival of challenged mice and decreases lung inflammation and injury. Both the rabbit polyclonal anti-PcrV antibody and the murine monoclonal anti-PcrV antibody, mAb166, inhibit TTS toxin translocation. mAb166 IgG was cloned, and a molecular engineered humanized anti-PcrV IgG antigen-binding fragment, KB001, was developed for clinical use. KB001 is currently undergoing Phase-II clinical trials for ventilator-associated pneumonia in France and chronic pneumonia in cystic fibrosis in USA. In these studies, KB001 has demonstrated its safety, a favorable pharmacokinetic profile, and promising potential as a nonantibiotic strategy to reduce airway inflammation and damage in P. aeruginosa pneumonia.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Infecções por Pseudomonas/imunologia , Vacinas contra Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Bacteriemia/imunologia , Sistemas de Secreção Bacterianos , Imunoglobulina G/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Lesão Pulmonar/microbiologia , Lesão Pulmonar/prevenção & controle , Camundongos , Pneumonia/microbiologia , Pneumonia/prevenção & controle , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/patogenicidade , Sepse/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA