RESUMO
In electrochemical energy storage and conversion systems, the anodic oxygen evolution reaction (OER) accounts for a large proportion of the energy consumption. The electrocatalytic urea oxidation reaction (UOR) is one of the promising alternatives to OER, owing to its low thermodynamic potential. However, owing to the sluggish UOR kinetics, its potential in practical use has not been unlocked. Herein, we developed a tungsten-doped nickel catalyst (Ni-WOx ) with superior activity towards UOR. The Ni-WOx catalyst exhibited record fast reaction kinetics (440â mA cm-2 at 1.6â V versus reversible hydrogen electrode) and a high turnover frequency of 0.11â s-1 , which is 4.8 times higher than that without W dopants. In further experiments, we found that the W dopant regulated the local charge distribution of Ni atoms, leading to the formation of Ni3+ sites with superior activity and thus accelerating the interfacial catalytic reaction. Moreover, when we integrated Ni-WOx into a CO2 flow electrolyzer, the cell voltage is reduced to 2.16â V accompanying with ≈98 % Faradaic efficiency towards carbon monoxide.
RESUMO
The electrocatalytic urea oxidation reaction (UOR) provides more economic electrons than water oxidation for various renewable energy-related systems owing to its lower thermodynamic barriers. However, it is limited by sluggish reaction kinetics, especially by CO2 desorption steps, masking its energetic advantage compared with water oxidation. Now, a lattice-oxygen-involved UOR mechanism on Ni4+ active sites is reported that has significantly faster reaction kinetics than the conventional UOR mechanisms. Combined DFT, 18 O isotope-labeling mass spectrometry, and inâ situ IR spectroscopy show that lattice oxygen is directly involved in transforming *CO to CO2 and accelerating the UOR rate. The resultant Ni4+ catalyst on a glassy carbon electrode exhibits a high current density (264â mA cm-2 at 1.6â V versus RHE), outperforming the state-of-the-art catalysts, and the turnover frequency of Ni4+ active sites towards UOR is 5 times higher than that of Ni3+ active sites.
RESUMO
Enhancing the p-orbital delocalization of a Bi catalyst (termed as POD-Bi) via layer coupling of the short inter-layer Bi-Bi bond facilitates the adsorption of intermediate *OCHO of CO2 and thus boosts the CO2 reduction reaction (CO2 RR) rate to formate. X-ray absorption fine spectroscopy shows that the POD-Bi catalyst has a shortened inter-layer bond after the catalysts are electrochemically reduced inâ situ from original BiOCl nanosheets. The catalyst on a glassy carbon electrode exhibits a record current density of 57â mA cm-2 (twice the state-of-the-art catalyst) at -1.16â V vs. RHE with an excellent formate Faradic efficiency (FE) of 95 %. The catalyst has a record half-cell formate power conversion efficiency of 79 % at a current density of 100â mA cm-2 with 93 % formate FE when applied in a flow-cell system. The highest rate of the CO2 RR production reported (391â mg h-1 cm2 ) was achieved at a current density of 500â mA cm-2 with formate FE of 91 % at high CO2 pressure.
RESUMO
Electrochemical reduction of CO into valuable multicarbon (C2+) liquids is crucial for reducing CO2 emissions and advancing clean energy, yet mastering efficiency and selectivity in this process remains a tough challenge. Herein, we employ a surface-modification strategy using electrochemically active polymeric 1,4,5,8-naphthalenete-tracarboxylic dianhydride (PNTCDA)-modified copper nanosheets (PM-Cu) to rearrange reactive species in the electric double layer, where the PNTCDA triggers a distinctive enolization that anchor potassium ions (K+) onto the cathode surface under reduction condition. Electrochemical analysis and computational simulations revealed that this approach fine-tunes K+ distribution in the double layer, making the dehydration of hydrated K+ more efficient and reducing active water molecules at the interface, thus inhibiting the hydrogen evolution reaction while concurrently promoting CO reduction via enhanced CâC coupling. For the first time, the PM-Cu catalyst demonstrates ampere-scale current densities with the exclusive selectivity of a C2+ liquid product yield exceeding 90%. Thus, by tailoring the local microenvironment with electrochemically active organics, it is possible to modulate CO reduction, improve sustainable energy storage, and increase industrial carbon utilization.
RESUMO
The selective oxidation of methane to methanol, using H2O2 generated in situ from the elements, has been investigated using a series of ZSM-5-supported AuPd catalysts of varying elemental composition, prepared via a deposition precipitation protocol. The alloying of Pd with Au was found to offer significantly improved efficacy, compared to that observed over monometallic analogues. Complementary studies into catalytic performance toward the direct synthesis and subsequent degradation of H2O2, under idealized conditions, indicate that methane oxidation efficacy is not directly related to H2O2 production rates, and it is considered that the known ability of Au to promote the release of reactive oxygen species is the underlying cause for the improved performance of the bimetallic catalysts.
RESUMO
Developing efficient electrocatalysts for oxygen evolution reaction (OER) in pH-neutral electrolyte is crucial for microbial electrolysis cells and electrochemical CO2 reduction. Unfortunately, the OER kinetics in neutral electrolyte is sluggish due to the low concentration of adsorbed reactants, with overpotentials of neutral OER at present much higher than that in acidic or alkaline electrolyte. Here, hydrated metal cations (Ca2+ ) are sought to be incorporated into the state-of-the-art Ru-Ir binary oxide to tailor the surface oxygen environments (lattice-oxygen and adsorbed oxygen species) for efficient neutral OER. Using a sol-gel method, ternary Ru-Ir-Ca oxides are synthesized in atomically homogenous manner, and the obtained catalyst on glassy carbon electrode achieves 10 mA cm-2 at a low overpotential of 250 mV, with no degradation for 200 h of operation. In situ X-ray absorption spectroscopy, in situ 18 O isotope-labeling differential electrochemical mass spectrometry, and 18 O isotope-labeling secondary ion mass spectroscopy studies are carried out. The results reveal that incorporation of Ca2+ can enhance the covalency of metal-oxygen bonds and the electrophilic nature of surface metal-bonded oxygen sites; and simultaneously facilitate the adsorption of water molecules on catalyst surface, which accelerates the lattice-oxygen-involved reaction, thus improving the overall OER performance of RuIrCaOx catalyst.