Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Physiol ; 601(13): 2685-2710, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36114707

RESUMO

Disruption of the transverse-axial tubule system (TATS) in diseases such as heart failure and atrial fibrillation occurs in combination with changes in the expression and distribution of key Ca2+ -handling proteins. Together this ultrastructural and ionic remodelling is associated with aberrant Ca2+ cycling and electrophysiological instabilities that underlie arrhythmic activity. However, due to the concurrent changes in TATs and Ca2+ -handling protein expression and localization that occur in disease it is difficult to distinguish their individual contributions to the arrhythmogenic state. To investigate this, we applied our novel 3D human atrial myocyte model with spatially detailed Ca2+ diffusion and TATS to investigate the isolated and interactive effects of changes in expression and localization of key Ca2+ -handling proteins and variable TATS density on Ca2+ -handling abnormality driven membrane instabilities. We show that modulating the expression and distribution of the sodium-calcium exchanger, ryanodine receptors and the sarcoplasmic reticulum (SR) Ca2+ buffer calsequestrin have varying pro- and anti-arrhythmic effects depending on the balance of opposing influences on SR Ca2+ leak-load and Ca2+ -voltage relationships. Interestingly, the impact of protein remodelling on Ca2+ -driven proarrhythmic behaviour varied dramatically depending on TATS density, with intermediately tubulated cells being more severely affected compared to detubulated and densely tubulated myocytes. This work provides novel mechanistic insight into the distinct and interactive consequences of TATS and Ca2+ -handling protein remodelling that underlies dysfunctional Ca2+ cycling and electrophysiological instability in disease. KEY POINTS: In our companion paper we developed a 3D human atrial myocyte model, coupling electrophysiology and Ca2+ handling with subcellular spatial details governed by the transverse-axial tubule system (TATS). Here we utilize this model to mechanistically examine the impact of TATS loss and changes in the expression and distribution of key Ca2+ -handling proteins known to be remodelled in disease on Ca2+ homeostasis and electrophysiological stability. We demonstrate that varying the expression and localization of these proteins has variable pro- and anti-arrhythmic effects with outcomes displaying dependence on TATS density. Whereas detubulated myocytes typically appear unaffected and densely tubulated cells seem protected, the arrhythmogenic effects of Ca2+ handling protein remodelling are profound in intermediately tubulated cells. Our work shows the interaction between TATS and Ca2+ -handling protein remodelling that underlies the Ca2+ -driven proarrhythmic behaviour observed in atrial fibrillation and may help to predict the effects of antiarrhythmic strategies at varying stages of ultrastructural remodelling.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Antiarrítmicos , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteínas , Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sinalização do Cálcio
2.
J Physiol ; 601(13): 2655-2683, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36094888

RESUMO

Intracellular calcium (Ca2+ ) cycling is tightly regulated in the healthy heart ensuring effective contraction. This is achieved by transverse (t)-tubule membrane invaginations that facilitate close coupling of key Ca2+ -handling proteins such as the L-type Ca2+ channel and Na+ -Ca2+ exchanger (NCX) on the cell surface with ryanodine receptors (RyRs) on the intracellular Ca2+ store. Although less abundant and regular than in the ventricle, t-tubules also exist in atrial myocytes as a network of transverse invaginations with axial extensions known as the transverse-axial tubule system (TATS). In heart failure and atrial fibrillation, there is TATS remodelling that is associated with aberrant Ca2+ -handling and Ca2+ -induced arrhythmic activity; however, the mechanism underlying this is not fully understood. To address this, we developed a novel 3D human atrial myocyte model that couples electrophysiology and Ca2+ -handling with variable TATS organization and density. We extensively parameterized and validated our model against experimental data to build a robust tool examining TATS regulation of subcellular Ca2+ release. We found that varying TATS density and thus the localization of key Ca2+ -handling proteins has profound effects on Ca2+ handling. Following TATS loss, there is reduced NCX that results in increased cleft Ca2+ concentration through decreased Ca2+ extrusion. This elevated Ca2+ increases RyR open probability causing spontaneous Ca2+ releases and the promotion of arrhythmogenic waves (especially in the cell interior) leading to voltage instabilities through delayed afterdepolarizations. In summary, the present study demonstrates a mechanistic link between TATS remodelling and Ca2+ -driven proarrhythmic behaviour that probably reflects the arrhythmogenic state observed in disease. KEY POINTS: Transverse-axial tubule systems (TATS) modulate Ca2+ handling and excitation-contraction coupling in atrial myocytes, with TATS remodelling in heart failure and atrial fibrillation being associated with altered Ca2+ cycling and subsequent arrhythmogenesis. To investigate the poorly understood mechanisms linking TATS variation and spontaneous Ca2+ release, we built, parameterized and validated a 3D human atrial myocyte model coupling electrophysiology and spatially-detailed subcellular Ca2+ handling governed by the TATS. Simulated TATS loss causes diastolic Ca2+ and voltage instabilities through reduced Na+ -Ca2+ exchanger-mediated Ca2+ removal, cleft Ca2+ accumulation and increased ryanodine receptor open probability, resulting in spontaneous Ca2+ release and promotion of arrhythmogenic waves and delayed afterdepolarizations. At fast electrical rates typical of atrial tachycardia/fibrillation, spontaneous Ca2+ releases are larger and more frequent in the cell interior than at the periphery. Our work provides mechanistic insight into how atrial TATS remodelling can lead to Ca2+ -driven instabilities that may ultimately contribute to the arrhythmogenic state in disease.


Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Humanos , Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Retículo Sarcoplasmático/metabolismo , Miócitos Cardíacos/metabolismo , Sinalização do Cálcio , Proteínas , Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 325(4): H896-H908, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37624096

RESUMO

By sensing changes in intracellular Ca2+, small-conductance Ca2+-activated K+ (SK) channels dynamically regulate the dynamics of the cardiac action potential (AP) on a beat-to-beat basis. Given their predominance in atria versus ventricles, SK channels are considered a promising atrial-selective pharmacological target against atrial fibrillation (AF), the most common cardiac arrhythmia. However, the precise contribution of SK current (ISK) to atrial arrhythmogenesis is poorly understood, and may potentially involve different mechanisms that depend on species, heart rates, and degree of AF-induced atrial remodeling. Both reduced and enhanced ISK have been linked to AF. Similarly, both SK channel up- and downregulation have been reported in chronic AF (cAF) versus normal sinus rhythm (nSR) patient samples. Here, we use our multiscale modeling framework to obtain mechanistic insights into the contribution of ISK in human atrial cardiomyocyte electrophysiology. We simulate several protocols to quantify how ISK modulation affects the regulation of AP duration (APD), Ca2+ transient, refractoriness, and occurrence of alternans and delayed afterdepolarizations (DADs). Our simulations show that ISK activation shortens the APD and atrial effective refractory period, limits Ca2+ cycling, and slightly increases the propensity for alternans in both nSR and cAF conditions. We also show that increasing ISK counteracts DAD development by enhancing the repolarization force that opposes the Ca2+-dependent depolarization. Taken together, our results suggest that increasing ISK in human atrial cardiomyocytes could promote reentry while protecting against triggered activity. Depending on the leading arrhythmogenic mechanism, ISK inhibition may thus be a beneficial or detrimental anti-AF strategy.NEW & NOTEWORTHY Using our established framework for human atrial myocyte simulations, we investigated the role of the small-conductance Ca2+-activated K+ current (ISK) in the regulation of cell function and the development of Ca2+-driven arrhythmias. We found that ISK inhibition, a promising atrial-selective pharmacological strategy against atrial fibrillation, counteracts the reentry-promoting abbreviation of atrial refractoriness, but renders human atrial myocytes more vulnerable to delayed afterdepolarizations, thus potentially increasing the propensity for ectopic (triggered) activity.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Humanos , Átrios do Coração , Doença do Sistema de Condução Cardíaco , Ventrículos do Coração , Eletrofisiologia
4.
Neurochem Res ; 48(2): 681-695, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36315368

RESUMO

Oxidative stress and neuroinflammation are deemed the prime causes of neurological damage after traumatic brain injury (TBI). Catalpol, an active ingredient of Rehmannia glutinosa, has been suggested to possess antioxidant and anti-inflammatory properties. This study was designed to investigate the protective effects of catalpol against TBI and the underlying mechanisms of action of catalpol. A rat model of TBI was induced by controlled cortical impact. Catalpol (10 mg/kg) or vehicle was administered via intravenous injection 1 h post trauma and then once daily for 3 consecutive days. Following behavioural tests performed 72 h after TBI, the animals were sacrificed and pericontusional areas of the brain were collected for neuropathological experiments and analysis. Treatment with catalpol significantly ameliorated neurological impairment, blood-brain barrier disruption, cerebral oedema, and neuronal apoptosis after TBI (P < 0.05). Catalpol also attenuated TBI-induced oxidative insults, as evidenced by reduced reactive oxygen species generation; decreased malondialdehyde levels; and enhanced superoxide dismutase, catalase and glutathione peroxidase activity (P < 0.05). Catalpol promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 and the expression of its downstream antioxidant enzyme HO-1 following TBI (P < 0.05). Moreover, catalpol treatment markedly inhibited posttraumatic microglial activation and neutrophil infiltration, suppressed NLRP3 inflammasome activation and reduced the production of the proinflammatory cytokine IL-1ß (P < 0.05). Taken together, these findings reveal that catalpol provides neuroprotection against oxidative stress and neuroinflammation after TBI in rats. Therefore, catalpol may be a novel treatment strategy for TBI patients.


Assuntos
Antioxidantes , Lesões Encefálicas Traumáticas , Ratos , Animais , Antioxidantes/farmacologia , Doenças Neuroinflamatórias , Modelos Animais de Doenças , Estresse Oxidativo , Lesões Encefálicas Traumáticas/metabolismo
5.
Basic Res Cardiol ; 117(1): 37, 2022 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-35842861

RESUMO

We have recently identified a pool of intracellular ß1 adrenergic receptors (ß1ARs) at the sarcoplasmic reticulum (SR) crucial for cardiac function. Here, we aim to characterize the integrative control of intracellular catecholamine for subcellular ß1AR signaling and cardiac function. Using anchored Förster resonance energy transfer (FRET) biosensors and transgenic mice, we determined the regulation of compartmentalized ß1AR-PKA signaling at the SR and plasma membrane (PM) microdomains by organic cation transporter 3 (OCT3) and monoamine oxidase A (MAO-A), two critical modulators of catecholamine uptake and homeostasis. Additionally, we examined local PKA substrate phosphorylation and excitation-contraction coupling in cardiomyocyte. Cardiac-specific deletion of MAO-A (MAO-A-CKO) elevates catecholamines and cAMP levels in the myocardium, baseline cardiac function, and adrenergic responses. Both MAO-A deletion and inhibitor (MAOi) selectively enhance the local ß1AR-PKA activity at the SR but not PM, and augment phosphorylation of phospholamban, Ca2+ cycling, and myocyte contractile response. Overexpression of MAO-A suppresses the SR-ß1AR-PKA activity and PKA phosphorylation. However, deletion or inhibition of OCT3 by corticosterone prevents the effects induced by MAOi and MAO-A deletion in cardiomyocytes. Deletion or inhibition of OCT3 also negates the effects of MAOi and MAO-A deficiency in cardiac function and adrenergic responses in vivo. Our data show that MAO-A and OCT3 act in concert to fine-tune the intracellular SR-ß1AR-PKA signaling and cardiac fight-or-flight response. We reveal a drug contraindication between anti-inflammatory corticosterone and anti-depressant MAOi in modulating adrenergic regulation in the heart, providing novel perspectives of these drugs with cardiac implications.


Assuntos
Corticosterona , Proteínas Quinases Dependentes de AMP Cíclico , Adrenérgicos/metabolismo , Adrenérgicos/farmacologia , Animais , Cálcio/metabolismo , Catecolaminas/metabolismo , Catecolaminas/farmacologia , Cátions/metabolismo , Cátions/farmacologia , Corticosterona/metabolismo , Corticosterona/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Camundongos , Monoaminoxidase/metabolismo , Monoaminoxidase/farmacologia , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Fosforilação , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Retículo Sarcoplasmático
6.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073281

RESUMO

Background: The mechanisms underlying dysfunction in the sinoatrial node (SAN), the heart's primary pacemaker, are incompletely understood. Electrical and Ca2+-handling remodeling have been implicated in SAN dysfunction associated with heart failure, aging, and diabetes. Cardiomyocyte [Na+]i is also elevated in these diseases, where it contributes to arrhythmogenesis. Here, we sought to investigate the largely unexplored role of Na+ homeostasis in SAN pacemaking and test whether [Na+]i dysregulation may contribute to SAN dysfunction. Methods: We developed a dataset-specific computational model of the murine SAN myocyte and simulated alterations in the major processes of Na+ entry (Na+/Ca2+ exchanger, NCX) and removal (Na+/K+ ATPase, NKA). Results: We found that changes in intracellular Na+ homeostatic processes dynamically regulate SAN electrophysiology. Mild reductions in NKA and NCX function increase myocyte firing rate, whereas a stronger reduction causes bursting activity and loss of automaticity. These pathologic phenotypes mimic those observed experimentally in NCX- and ankyrin-B-deficient mice due to altered feedback between the Ca2+ and membrane potential clocks underlying SAN firing. Conclusions: Our study generates new testable predictions and insight linking Na+ homeostasis to Ca2+ handling and membrane potential dynamics in SAN myocytes that may advance our understanding of SAN (dys)function.


Assuntos
Potenciais de Ação , Simulação por Computador , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Nó Sinoatrial/metabolismo , Sódio/metabolismo , Animais , Camundongos , Trocador de Sódio e Cálcio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
7.
Philos Trans A Math Phys Eng Sci ; 378(2173): 20190335, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32448070

RESUMO

Models of electrical activation and recovery in cardiac cells and tissue have become valuable research tools, and are beginning to be used in safety-critical applications including guidance for clinical procedures and for drug safety assessment. As a consequence, there is an urgent need for a more detailed and quantitative understanding of the ways that uncertainty and variability influence model predictions. In this paper, we review the sources of uncertainty in these models at different spatial scales, discuss how uncertainties are communicated across scales, and begin to assess their relative importance. We conclude by highlighting important challenges that continue to face the cardiac modelling community, identifying open questions, and making recommendations for future studies. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.


Assuntos
Fenômenos Eletrofisiológicos , Coração/fisiologia , Modelos Cardiovasculares , Incerteza , Coração/fisiopatologia , Humanos , Miocárdio/citologia , Miocárdio/patologia
8.
Am J Physiol Heart Circ Physiol ; 316(3): H527-H542, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30576220

RESUMO

Efforts to identify the mechanisms for the initiation and maintenance of human atrial fibrillation (AF) often focus on changes in specific elements of the atrial "substrate," i.e., its electrophysiological properties and/or structural components. We used experimentally validated mathematical models of the human atrial myocyte action potential (AP), both at baseline in sinus rhythm (SR) and in the setting of chronic AF, to identify significant contributions of the Ca2+-independent transient outward K+ current ( Ito) to electrophysiological instability and arrhythmia initiation. First, we explored whether changes in the recovery or restitution of the AP duration (APD) and/or its dynamic stability (alternans) can be modulated by Ito. Recent reports have identified disease-dependent spatial differences in expression levels of the specific K+ channel α-subunits that underlie Ito in the left atrium. Therefore, we studied the functional consequences of this by deletion of 50% of native Ito (Kv4.3) and its replacement with Kv1.4. Interestingly, significant changes in the short-term stability of the human atrial AP waveform were revealed. Specifically, this K+ channel isoform switch produced discontinuities in the initial slope of the APD restitution curve and appearance of APD alternans. This pattern of in silico results resembles some of the changes observed in high-resolution clinical electrophysiological recordings. Important insights into mechanisms for these changes emerged from known biophysical properties (reactivation kinetics) of Kv1.4 versus those of Kv4.3. These results suggest new approaches for pharmacological management of AF, based on molecular properties of specific K+ isoforms and their changed expression during progressive disease. NEW & NOTEWORTHY Clinical studies identify oscillations (alternans) in action potential (AP) duration as a predictor for atrial fibrillation (AF). The abbreviated AP in AF also involves changes in K+ currents and early repolarization of the AP. Our simulations illustrate how substitution of Kv1.4 for the native current, Kv4.3, alters the AP waveform and enhances alternans. Knowledge of this "isoform switch" and related dynamics in the AF substrate may guide new approaches for detection and management of AF.


Assuntos
Potenciais de Ação , Átrios do Coração/metabolismo , Modelos Cardiovasculares , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Função Atrial , Humanos , Cinética
9.
PLoS Comput Biol ; 14(11): e1006594, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30500818

RESUMO

Cardiac electrical alternans (CEA), manifested as T-wave alternans in ECG, is a clinical biomarker for predicting cardiac arrhythmias and sudden death. However, the mechanism underlying the spontaneous transition from CEA to arrhythmias remains incompletely elucidated. In this study, multiscale rabbit ventricular models were used to study the transition and a potential role of INa in perpetuating such a transition. It was shown CEA evolved into either concordant or discordant action potential (AP) conduction alternans in a homogeneous one-dimensional tissue model, depending on tissue AP duration and conduction velocity (CV) restitution properties. Discordant alternans was able to cause conduction failure in the model, which was promoted by impaired sodium channel with either a reduced or increased channel current. In a two-dimensional homogeneous tissue model, a combined effect of rate- and curvature-dependent CV broke-up alternating wavefronts at localised points, facilitating a spontaneous transition from CEA to re-entry. Tissue inhomogeneity or anisotropy further promoted break-up of re-entry, leading to multiple wavelets. Similar observations have also been seen in human atrial cellular and tissue models. In conclusion, our results identify a mechanism by which CEA spontaneously evolves into re-entry without a requirement for premature ventricular complexes or pre-existing tissue heterogeneities, and demonstrated the important pro-arrhythmic role of impaired sodium channel activity. These findings are model-independent and have potential human relevance.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/fisiopatologia , Biomarcadores/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca , Ventrículos do Coração/fisiopatologia , Coração/fisiopatologia , Algoritmos , Animais , Anisotropia , Biologia Computacional , Simulação por Computador , Eletrocardiografia , Átrios do Coração , Humanos , Processamento de Imagem Assistida por Computador , Modelos Cardiovasculares , Coelhos
10.
Biophys J ; 122(9): 1571-1573, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37040769
11.
PLoS Comput Biol ; 13(6): e1005587, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28622331

RESUMO

A recent experimental study investigating patients with lone atrial fibrillation identified six novel mutations in the KCNA5 gene. The mutants exhibited both gain- and loss-of-function of the atrial specific ultra-rapid delayed rectifier K+ current, IKur. The aim of this study is to elucidate and quantify the functional impact of these KCNA5 mutations on atrial electrical activity. A multi-scale model of the human atria was updated to incorporate detailed experimental data on IKur from both wild-type and mutants. The effects of the mutations on human atrial action potential and rate dependence were investigated at the cellular level. In tissue, we assessed the effects of the mutations on the vulnerability to unidirectional conduction patterns and dynamics of re-entrant excitation waves. Gain-of-function mutations shortened the action potential duration in single cells, and stabilised and accelerated re-entrant excitation in tissue. Loss-of-function mutations had heterogeneous effects on action potential duration and promoted early-after-depolarisations following beta-adrenergic stimulation. In the tissue model, loss-of-function mutations facilitated breakdown of excitation waves at more physiological excitation rates than the wild-type, and the generation of early-after-depolarisations promoted unidirectional patterns of excitation. Gain- and loss-of-function IKur mutations produced multiple mechanisms of atrial arrhythmogenesis, with significant differences between the two groups of mutations. This study provides new insights into understanding the mechanisms by which mutant IKur contributes to atrial arrhythmias. In addition, as IKur is an atrial-specific channel and a number of IKur-selective blockers have been developed as anti-AF agents, this study also helps to understand some contradictory results on both pro- and anti-arrhythmic effects of blocking IKur.


Assuntos
Fibrilação Atrial/genética , Variação Genética/genética , Sistema de Condução Cardíaco/fisiopatologia , Canal de Potássio Kv1.5/genética , Modelos Cardiovasculares , Modelos Genéticos , Simulação por Computador , Humanos , Ativação do Canal Iônico/genética , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Transdução de Sinais/genética , Relação Estrutura-Atividade
12.
PLoS Comput Biol ; 13(6): e1005593, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28609477

RESUMO

Gain-of-function mutations in KCNJ2-encoded Kir2.1 channels underlie variant 3 (SQT3) of the short QT syndrome, which is associated with atrial fibrillation (AF). Using biophysically-detailed human atria computer models, this study investigated the mechanistic link between SQT3 mutations and atrial arrhythmogenesis, and potential ion channel targets for treatment of SQT3. A contemporary model of the human atrial action potential (AP) was modified to recapitulate functional changes in IK1 due to heterozygous and homozygous forms of the D172N and E299V Kir2.1 mutations. Wild-type (WT) and mutant formulations were incorporated into multi-scale homogeneous and heterogeneous tissue models. Effects of mutations on AP duration (APD), conduction velocity (CV), effective refractory period (ERP), tissue excitation threshold and their rate-dependence, as well as the wavelength of re-entry (WL) were quantified. The D172N and E299V Kir2.1 mutations produced distinct effects on IK1 and APD shortening. Both mutations decreased WL for re-entry through a reduction in ERP and CV. Stability of re-entrant excitation waves in 2D and 3D tissue models was mediated by changes to tissue excitability and dispersion of APD in mutation conditions. Combined block of IK1 and IKr was effective in terminating re-entry associated with heterozygous D172N conditions, whereas IKr block alone may be a safer alternative for the E299V mutation. Combined inhibition of IKr and IKur produced a synergistic anti-arrhythmic effect in both forms of SQT3. In conclusion, this study provides mechanistic insights into atrial proarrhythmia with SQT3 Kir2.1 mutations and highlights possible pharmacological strategies for management of SQT3-linked AF.


Assuntos
Arritmias Cardíacas/fisiopatologia , Fibrilação Atrial/fisiopatologia , Acoplamento Excitação-Contração , Sistema de Condução Cardíaco/fisiopatologia , Modelos Cardiovasculares , Canais de Potássio Corretores do Fluxo de Internalização/genética , Potenciais de Ação , Arritmias Cardíacas/complicações , Fibrilação Atrial/complicações , Simulação por Computador , Predisposição Genética para Doença/genética , Átrios do Coração/fisiopatologia , Humanos , Ativação do Canal Iônico/genética , Modelos Genéticos , Mutação/genética , Contração Miocárdica , Potássio/metabolismo
13.
J Mol Cell Cardiol ; 111: 86-95, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28803858

RESUMO

A recent study has identified six novel genetic variations (D322H, E48G, A305T, D469E, Y155C, P488S) in KCNA5 (encoding Kv1.5 which carries the atrial-specific ultra-rapid delayed rectifier current, IKur) in patients with early onset of lone atrial fibrillation. These mutations are distinctive, resulting in either gain-of-function (D322H, E48G, A305T) or loss-of-function (D469E, Y155C, P488S) of IKur channels. Though affecting potassium channels, they may modulate the cellular active force and therefore atrial mechanical functions, which remains to be elucidated. The present study aimed to assess the inotropic effects of the identified six KCNA5 mutations on the human atria. Multiscale electromechanical models of the human atria were used to investigate the impact of the six KCNA5 mutations on atrial contractile functions. It was shown that the gain-of-function mutations reduced active contractile force primarily through decreasing the calcium transient (CaT) via a reduction in the L-type calcium current (ICaL) as a secondary effect of modulated action potential, whereas the loss-of-function mutations mediated positive inotropic effects by increased CaT via enhancing the reverse mode of the Na+/Ca2+ exchanger. The 3D atrial electromechanical coupled model predicted different functional impacts of the KCN5A mutation variants on atrial mechanical contraction by either reducing or increasing atrial output, which is associated with the gain-of-function mutations or loss-of-function mutations in KCNA5, respectively. This study adds insights to the functional impact of KCNA5 mutations in modulating atrial contractile functions.


Assuntos
Simulação por Computador , Átrios do Coração/fisiopatologia , Canal de Potássio Kv1.5/genética , Mutação/genética , Fenômenos Biomecânicos , Cardiotônicos , Humanos , Ativação do Canal Iônico , Modelos Cardiovasculares , Contração Miocárdica , Miócitos Cardíacos/metabolismo
14.
Biochim Biophys Acta ; 1839(11): 1161-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25201174

RESUMO

Abnormally high transcription of the glial cell-line derived neurotrophic factor (gdnf) gene in glioma cells is related to the hyperacetylation of histone H3 lysine 9 (H3K9) in its promoter region II, but the mechanism remains unclear. There are three consecutive putative binding sites for the transcription factor early growth response protein 1(Egr-1) in promoter region II of the gdnf gene, and Egr-1 participates in gdnf gene transcription activation. Here we show that the acetylation level of H3K9 at Egr-1 binding sites in gdnf gene promoter region II in rat C6 astroglioma cells was significantly higher than that in normal astrocytes, and the binding capacity was also significantly higher. In C6 astroglioma cells, gdnf gene transcription significantly decreased after Egr-1 knock-down. In addition, the deletion or mutation of the Egr-1 binding site also significantly down-regulated the activity of promoter region II of this gene in vitro. When curcumin decreased the acetylation level of H3K9 at the Egr-1 binding site, the binding of Egr-1 to promoter region II and GDNF mRNA levels significantly decreased. In contrast, trichostatin A treatment significantly increased H3K9 acetylation at the Egr-1 binding site, which significantly increased both the binding of Egr-1 with promoter region II and GDNF mRNA levels. In this context, knocking down Egr-1 significantly reduced the elevation in gdnf gene transcription. Collectively, our results demonstrate that the hyperacetylation of H3K9 at Egr-1 binding sites in promoter region II of the gdnf gene can up-regulate the binding of Egr-1 to increase gdnf gene transcription in glioma cells.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Glioma/genética , Glioma/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Acetilação , Animais , Sítios de Ligação , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Regiões Promotoras Genéticas , Ratos
15.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38496584

RESUMO

BACKGROUND AND AIMS: Substantial sex-based differences have been reported in atrial fibrillation (AF), with female patients experiencing worse symptoms, increased complications from drug side effects or ablation, and elevated risk of AF-related stroke and mortality. Recent studies revealed sex-specific alterations in AF-associated Ca2+ dysregulation, whereby female cardiomyocytes more frequently exhibit potentially proarrhythmic Ca2+-driven instabilities compared to male cardiomyocytes. In this study, we aim to gain a mechanistic understanding of the Ca2+-handling disturbances and Ca2+-driven arrhythmogenic events in males vs females and establish their responses to Ca2+-targeted interventions. METHODS AND RESULTS: We incorporated known sex differences and AF-associated changes in the expression and phosphorylation of key Ca2+-handling proteins and in ultrastructural properties and dimensions of atrial cardiomyocytes into our recently developed 3D atrial cardiomyocyte model that couples electrophysiology with spatially detailed Ca2+-handling processes. Our simulations of quiescent cardiomyocytes show increased incidence of Ca2+ sparks in female vs male myocytes in AF, in agreement with previous experimental reports. Additionally, our female model exhibited elevated propensity to develop pacing-induced spontaneous Ca2+ releases (SCRs) and augmented beat-to-beat variability in action potential (AP)-elicited Ca2+ transients compared with the male model. Parameter sensitivity analysis uncovered precise arrhythmogenic contributions of each component that was implicated in sex and/or AF alterations. Specifically, increased ryanodine receptor phosphorylation in female AF cardiomyocytes emerged as the major SCR contributor, while reduced L-type Ca2+ current was protective against SCRs for male AF cardiomyocytes. Furthermore, simulations of tentative Ca2+-targeted interventions identified potential strategies to attenuate Ca2+-driven arrhythmogenic events in female atria (e.g., t-tubule restoration, and inhibition of ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase), and revealed enhanced efficacy when applied in combination. CONCLUSIONS: Our sex-specific computational models of human atrial cardiomyocytes uncover increased propensity to Ca2+-driven arrhythmogenic events in female compared to male atrial cardiomyocytes in AF, and point to combined Ca2+-targeted interventions as promising approaches to treat AF in female patients. Our study establishes that AF treatment may benefit from sex-dependent strategies informed by sex-specific mechanisms.

16.
Neuroscience ; 545: 111-124, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38492796

RESUMO

Armcx1 is a member of the ARMadillo repeat-Containing protein on the X chromosome (ARMCX) family, which is recognized to have evolutionary conserved roles in regulating mitochondrial transport and dynamics. Previous research has shown that Armcx1 is expressed at higher levels in mice after axotomy and in adult retinal ganglion cells after crush injury, and this protein increases neuronal survival and axonal regeneration. However, its role in traumatic brain injury (TBI) is unclear. Therefore, the aim of this study was to assess the expression of Armcx1 after TBI and to explore possible related mechanisms by which Armcx1 is involved in TBI. We used C57BL/6 male mice to model TBI and evaluated the role of Armcx1 in TBI by transfecting mice with Armcx1 small interfering RNA (siRNA) to inhibit Armcx1 expression 24 h before TBI modeling. Western blotting, immunofluorescence, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, Nissl staining, transmission electron microscopy, adenosine triphosphate (ATP) level measurement, neuronal apoptosis analysis, neurological function scoring and the Morris water maze were performed. The results demonstrated that Armcx1 protein expression was elevated after TBI and that the Armcx1 protein was localized in neurons and astroglial cells in cortical tissue surrounding the injury site. In addition, inhibition of Armcx1 expression further led to impaired mitochondrial transport, abnormal morphology, reduced ATP levels, aggravation of neuronal apoptosis and neurological dysfunction, and decrease Miro1 expression. In conclusion, our findings indicate that Armcx1 may exert neuroprotective effects by ameliorating neurological injury after TBI through a mitochondrial transport pathway involving Miro1.


Assuntos
Proteínas do Domínio Armadillo , Lesões Encefálicas Traumáticas , Camundongos Endogâmicos C57BL , Mitocôndrias , Proteínas rho de Ligação ao GTP , Animais , Masculino , Camundongos , Trifosfato de Adenosina/metabolismo , Apoptose/fisiologia , Proteínas do Domínio Armadillo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Aprendizagem em Labirinto/fisiologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Proteínas rho de Ligação ao GTP/metabolismo
17.
CNS Neurosci Ther ; 30(3): e14691, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38532543

RESUMO

AIMS: Neuronal cell death is a primary factor that determines the outcome after traumatic brain injury (TBI). We previously revealed the importance of receptor for activated C kinase (RACK1), a multifunctional scaffold protein, in maintaining neuronal survival after TBI, but the specific mechanism remains unclear. The aim of this study was to explore the mechanism underlying RACK1-mediated neuroprotection in TBI. METHODS: TBI model was established using controlled cortical impact injury in Sprague-Dawley rats. Genetic intervention and pharmacological inhibition of RACK1 and PERK-autophagy signaling were administrated by intracerebroventricular injection. Western blotting, coimmunoprecipitation, transmission electron microscopy, real-time PCR, immunofluorescence, TUNEL staining, Nissl staining, neurobehavioral tests, and contusion volume assessment were performed. RESULTS: Endogenous RACK1 was upregulated and correlated with autophagy induction after TBI. RACK1 knockdown markedly inhibited TBI-induced autophagy, whereas RACK1 overexpression exerted the opposite effects. Moreover, RACK1 overexpression ameliorated neuronal apoptosis, neurological deficits, and cortical tissue loss after TBI, and these effects were abrogated by the autophagy inhibitor 3-methyladenine or siRNAs targeting Beclin1 and Atg5. Mechanistically, RACK1 interacted with PERK and activated PERK signaling. Pharmacological and genetic inhibition of the PERK pathway abolished RACK1-induced autophagy after TBI. CONCLUSION: Our findings indicate that RACK1 protected against TBI-induced neuronal damage partly through autophagy induction by regulating the PERK signaling pathway.


Assuntos
Lesões Encefálicas Traumáticas , Transdução de Sinais , Ratos , Animais , Ratos Sprague-Dawley , Lesões Encefálicas Traumáticas/metabolismo , Neuroproteção , Apoptose , Autofagia , Receptores de Quinase C Ativada
18.
Brain Res Bull ; 207: 110870, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185389

RESUMO

Traumatic brain injury (TBI) is a common disease worldwide with high mortality and disability rates. Besides the primary mechanical injury, the secondary injury associated with TBI can also induce numerous pathological changes, such as brain edema, nerve apoptosis, and neuroinflammation, which further aggravates neurological dysfunction and even causes the death due to the primary injury. Among them, neuronal apoptosis is a key link in the injury. Melanocortin-1 receptor (MC1R) is a G protein coupled receptor, belonging to the melanocortin receptor family. Studies have shown that activation of MC1R inhibits oxidative stress and apoptosis, and confers neuroprotective effects against various neurological diseases. Merlin is a protein product of the NF2 gene, which is widely expressed in the central nervous system (CNS) of mice, rats, and humans. Studies have indicated that Merlin is associated with MC1R. In this study, we explored the anti-apoptotic effects and potential mechanisms of MC1R. A rat model of TBI was established through controlled cortical impact. The MC1R-specific agonist Nle4-D-Phe7-α-Melanocyte (NDP-MSH) and the inhibitor MSG-606 were employed to explore the effects of MC1R and Merlin following TBI and investigated the associated mechanisms. The results showed that the expression levels of MC1R and Merlin were upregulated after TBI, and activation of MC1R promoted Merlin expression. Further, we found that MC1R activation significantly improved neurological dysfunction and reduced brain edema and neuronal apoptosis induced by TBI in rats. Mechanistically, its neuroprotective function and anti-apoptotic were partly associated with MC1R activation. In conclusion, we demonstrated that MC1R activation after TBI may inhibit apoptosis and confer neuroprotection by upregulating the expression of Merlin.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Animais , Ratos , Apoptose , Edema Encefálico/etiologia , Lesões Encefálicas Traumáticas/patologia , Genes da Neurofibromatose 2 , Neurofibromina 2/genética , Neurofibromina 2/farmacologia , Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 1 de Melanocortina/metabolismo
19.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38659841

RESUMO

The authors have withdrawn their manuscript owing to technical concerns merged during peer review. Therefore, the authors do not wish this work to be cited as a reference. If you have any questions, please contact the corresponding author.

20.
JACC Clin Electrophysiol ; 9(12): 2642-2648, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37768254

RESUMO

Despite evidence that women are at higher risk of drug-induced torsade de pointes and sudden cardiac death, female sex is vastly underrepresented in cardiovascular research, thus limiting our fundamental understanding of sex-specific arrhythmia mechanisms and our ability to predict arrhythmia propensity. To address this urgent clinical and preclinical need, we developed a quantitative tool that predicts the electrophysiological response to drug administration in female cardiomyocytes starting from data collected in males. We demonstrate the suitability of our translator for sex-specific cardiac safety assessment and include proof-of-concept application of our translator to in vitro and in vivo data.


Assuntos
Síndrome do QT Longo , Humanos , Masculino , Feminino , Síndrome do QT Longo/induzido quimicamente , Preparações Farmacêuticas , Eletrocardiografia , Coração , Arritmias Cardíacas/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA