RESUMO
Mackinawite (FeS) has gained increasing interest due to its potential application in contaminant removal by either reduction or oxidation processes. This study further demonstrated the efficiency of FeS in degrading nitrobenzene (ArNO2) via a sequential two-step reduction and oxidation process under neutral conditions. In the reduction stage, FeS rapidly reduced ArNO2 to aniline (ArNH2), with nitrosobenzene (ArNO) and phenylhydroxylamine (ArNHOH) serving as the intermediates. X-ray photoelectron spectroscopy (XPS) analysis indicated that both Fe(II) and S(II) in FeS contributed electrons to the reduction of ArNO2. In the subsequent oxidation stage with oxygen, by addition of 0.5 mM tripolyphosphate (TPP), ArNH2 generated in the reduction process could be effectively oxidized to aminophenols by hydroxyl radicals (â¢OH), which would undergo eventual mineralization via ring-cleavage reactions. TPP exerted a favorable role in enhancing â¢OH production for ArNH2 degradation by promoting the formation of the dissolved Fe(II)-TPP complex, thus enhancing the homogeneous Fenton reaction. Additionally, TPP adsorption inhibited the surface oxidation reactivity of FeS due to the change of Fe(II) coordination. Finally, the effective degradation of ArNO2 by FeS in actual groundwater was demonstrated by using this sequential reduction and oxidation approach. These research findings provide a theoretical basis for a new FeS-based remediation approach, offering an alternative way for comprehensive removal of ArNO2.
Assuntos
Compostos Ferrosos , Radical Hidroxila , Compostos Ferrosos/química , Oxirredução , NitrobenzenosRESUMO
Gastric cancer (GC) is one of the infection-related cancers. Helicobacter pylori and Epstein-Barr virus (EBV) were established risk factors for GC. Recently, there are several reports showing the inconsistent association between hepatitis B virus (HBV) infection and the development of GC. To explore the relationship between HBV infection and the development of GC, we designed a meta-analysis of previous epidemiological studies, a hospital-based case-control study, followed by an immunohistochemistry (IHC) assay of HBV-exposed GC samples. We found that HBV infection was associated with an increased risk of GC based on the meta-analysis. No significant association between HBV infection and GC was detected according to our hospital-based case-control study. Histological examination showed that the gastric epithelium positive for HBx demonstrated a higher nuclear-cytoplasmic ratio compared to those HBx-negative cells. HBx and HBcAg were expressed more in tumors than those in normal counterparts in HBV-exposed subjects, and PD-L1 was lower in GC tissues from HBV carriers than those in HBV clearances. In conclusion, HBV infection may contribute to a higher risk for GC based on the meta-analysis and to the morphological atypia of gastric epithelium by the histological assessment, and GC patients among HBV carriers showed lower expression of PD-L1 may lose the chance for immune checkpoint blockade therapy.
Assuntos
Adenocarcinoma/virologia , Mucosa Gástrica/virologia , Hepatite B/complicações , Neoplasias Gástricas/virologia , Idoso , Antígeno B7-H1/genética , Estudos de Casos e Controles , Feminino , Mucosa Gástrica/patologia , Antígenos do Núcleo do Vírus da Hepatite B/genética , Vírus da Hepatite B/patogenicidade , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias/genéticaRESUMO
Previously we reported that ErbB4 played a protective role in chronic liver injury and hepatocellular carcinoma. Herein, we examined the role of ErbB4 in the development of colitis-associated cancer (CAC) in ErbB4 knockout mice models, in vitro cell lines and clinical samples. We found that ErbB4 deficiency may lead to more severe inflammation, slower recovery and the development of CAC. Further, loss of ErbB4 could activate Kras by upregulating rate-limiting enzymes in cholesterol metabolism pathway through interacting with the transcription factor Srebf1. In clinic samples, ErbB4 is downregulated in colonic tissues from patients with Crohn's disease. And data from The Cancer Genome Atlas also showed significant negative correlation between ErbB4 and several cholesterol metabolic enzymes. In summary, our study uncovers ErbB4 as a protector in the development of CAC, for its loss could activate Kras by upregulating cholesterol metabolism.
Assuntos
Colesterol/metabolismo , Colite/complicações , Neoplasias do Colo/etiologia , Doença de Crohn/patologia , Receptor ErbB-4/metabolismo , Receptor ErbB-4/fisiologia , Animais , Apoptose , Proliferação de Células , Colite/induzido quimicamente , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Doença de Crohn/metabolismo , Sulfato de Dextrana , Genoma , Humanos , Camundongos , Camundongos Knockout , PrognósticoRESUMO
MiRNA isoforms (isomiRs) were defined as an addition or deletion of one or more nucleotides at the 5' or 3' ends or both. Different isomiRs of the same miRNA can target different genes, which have extended the regulatory scale medicated by miRNA. In this study, we systematically analyzed miRNA isoforms in hepatocellular carcinoma (HCC) based on The Cancer Genome Atlas (TCGA) data and further explore their role by in silico and in vitro studies. We found that higher variety and quantity of miR-139-5p isoforms negatively correlated with the malignancy of HCC. And patients with higher variety and quantity of iso-miR-139-5p exhibited favorable survival, independent of tumor stage. Interestingly, miR-139-5p -1|-1 showed increased complementary effect of its target IGF1R than the archetype of miR-139-5p, and could further inhibit cellular movement more vigorously than its archetype. In conclusion, not only miR-139-5p itself, but its isoforms' variety and quantity confer suppressive role in HCC.
Assuntos
Carcinoma Hepatocelular/metabolismo , Genes Supressores de Tumor , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , RNA Neoplásico/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem da Célula , Sobrevivência Celular , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , RNA Neoplásico/genéticaRESUMO
Previously, we identified UBE2L3 as a susceptibility gene for chronic hepatitis B virus (HBV) infection through genome-wide association study. Here, we analysed the association between genetic variants of UBE2L3 and the susceptibility to HBV-related hepatocellular carcinoma (HCC) and further explored its role in HCC. This case-control study included 1344 subjects who cleared HBV, 1560 HBV carriers and 1057 HBV-related HCC patients. Two single nucleotide polymorphisms (SNPs) were genotyped, including rs2266959 and rs4821116. Logistic regression analysis was performed to compute the odds ratio (OR) and 95% confidence interval (CI). We further analysed the expression of UBE2L3 and its association with pathological features based on The Cancer Genome Atlas (TCGA) data and our tissue microarray. Proliferation and migration assays were performed in hepatoma cell lines with or without UBE2L3 knockdown. Further RNA-seq analysis was performed to explore the underlying oncogenic mechanism. The variant genotypes of rs4821116 in UBE2L3 were associated with decreased risk for HCC and chronic HBV infection. Moreover, based on both TCGA and our tissue microarray data, higher levels of UBE2L3 expression were correlated with higher tumour grade, advanced tumour stage and poor survival. In vitro analysis revealed that UBE2L3 may promote hepatocyte proliferation and migration. RNA-seq analysis showed that UBE2L3 was inversely correlated with CDKN2B, a negative regulator of cell cycle, and CLDN1, loss of which may promote cancer metastasis. In conclusion, UBE2L3 may also be a susceptibility gene in HBV-related HCC, and it may promote HCC proliferation and migration by negatively regulating CDKN2B and CLDN1.
Assuntos
Carcinoma Hepatocelular/genética , Predisposição Genética para Doença/genética , Hepatite B Crônica/complicações , Neoplasias Hepáticas/genética , Enzimas de Conjugação de Ubiquitina/genética , Animais , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , China/epidemiologia , Progressão da Doença , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Vírus da Hepatite B/genética , Hepatite B Crônica/epidemiologia , Hepatite B Crônica/patologia , Hepatite B Crônica/virologia , Humanos , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Camundongos , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único , Regulação para Cima/genéticaRESUMO
Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins. Heterogeneous nuclear ribonucleoprotein D-like (HNRPDL) is a member of this family. Though aberrant expression of HNRPDL has been reported in a few cancers, whether HNRPDL is deregulated in colon cancer patients and what role this protein plays in these cells are not known yet. In this study, we found that HNRPDL was significantly up-regulated in colon cancer specimens than control. We also demonstrated that HNRPDL silencing inhibited the growth of SW620 cells both in vitro and in vivo. Conversely, we constructed a retroviral vector to deliver HNRPDL into non-malignant NIH-3T3 cells and injected these cells into nude mice. HNRPDL-overexpressing NIH-3T3 cells generated tumors in nude mice but not the control cells. Mechanistically, HNRPDL promoted cell-cycle progression associated with enhanced expressions of cyclin D3 and Ki-67 but decreased expressions of p53 and p21. Taken together, our data demonstrate that HNRPDL is aberrantly expressed in colon cancer cells, which promotes the growth of these cells by activating cell-cycle progression.
Assuntos
Ciclo Celular/genética , Proliferação de Células/genética , Neoplasias do Colo/genética , Ribonucleoproteínas/genética , Regulação para Cima/genética , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Neoplasias do Colo/metabolismo , Neoplasias do Colo/terapia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Células NIH 3T3 , Terapêutica com RNAi/métodos , Ribonucleoproteínas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
ERBB4, one member of the epidermal growth factor receptor (EGFR) family, plays a key role in physiological and pathological processes. Recently, we identified that ERBB4 played a protective role from chronic hepatitis B virus infection. However, the role of ERBB4 in hepatocellular carcinoma (HCC) is still unclear. Here, we explore the role of ERBB4 in the development of HCC using in vitro models, in vivo animal models and clinical samples of HCC. Liver-specific ERBB4 knockout alleles and full ERBB4 except heart knockout mice were used in this study. Liver inflammation and tumor models of mice were produced by carbon tetrachloride (CCl4) and diethylnitrosamine (DEN) administration, respectively. Commercial tissue arrays of 90 HCC patients with paired counterparts were used to evaluate the expression and the prognostic value of ERBB4. Genes altered in the setting of ERBB4 loss was studied by microarray analysis and further validated by real-time PCR. We have found that depletion of ERBB4 in mice leads to more severe injury and liver tumor formation and loss of ERBB4 contributes to the development of hepatocellular tumor. In clinic samples of HCC, ERBB4 is down-regulated and exhibit prognostic value of HCC patients. Mechanistically, loss of ERBB4 suppressed p53 expression by inhibiting the expression of the tumor suppressor tp53inp1. Our study uncovers ERBB4 as a suppressor in the development of HCC and implies an ERBB4-TP53INP1-P53 axis in HCC.
Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Receptor ErbB-4/genética , Proteínas Supressoras de Tumor/genética , Animais , Apoptose/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Células Hep G2 , Hepatite B Crônica/genética , Hepatite B Crônica/patologia , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Knockout , PrognósticoRESUMO
MiR-21, the only microRNA (miRNA) found to be overexpressed in any type of solid tumor, its guide stand, miR-21-5p, has been studied a lot in colorectal cancer (CRC); however, few researchers focused on its passenger strand, miR-21-3p. In our study, based on The Cancer Genome Atlas (TCGA) data, we found that there were more varieties and quantities of miR-21-3p isoforms in microsatellite instability (MSI)-type CRC. We further examined the role of miR-21-3p by in vitro and in vivo studies. MiR-21-3p may be an oncogene in CRC by promoting cellular mobility through epithelial-mesenchymal transition. However, different isoforms, especially miR-21-3p 0 | 2, may be a favorable prognostic marker for CRC survival, probably due to increased complementary effect of miR-21-5p and/or target genes. Further study investigating the underlying mechanism of miRNA isoforms is needed.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Animais , Apoptose , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estadiamento de Neoplasias , Prognóstico , Isoformas de Proteínas , Proteína Smad7/genética , Proteína Smad7/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Hypermutated neoantigens in cancers with DNA mismatch repair deficiency (dMMR) are prerequisites for favorable clinical responses to immune-checkpoint blockade (ICB) therapy. However, TMB is not significantly associated with favorable prognosis from Preclinical and clinical studies. It implies that except for TMB, other mechanisms should be needed to contribute to successful cancer immunotherapy. We found that the hyperactivation of PANoptotic effective molecules in dMMR tumor cells caused cell membrane damage, induced ESCRT-mediated membrane repair, and protected tumor cells from the damage caused by Triton X-100, while DNA mismatch repair proficient (pMMR) tumor cells were sensitive to Triton X-100 mediating cell membrane damage due to the lack of ESCRT-mediated membrane repair. There was hyperactivation of GSDMD, GSDME, and p-MLKL in dMMR tumor cells. Co-treatment of IFN-γ and TNF-α induced rapid death of dMMR tumor cells by inducing PANoptosis including pyroptosis, apoptosis, and no necrosis. pMMR tumor cells had defects in the PANoptosis pathway and were resistant to co-treatment of IFN-γ and TNF-α. In conclusion, we can activate immune cells to release IFN-γ and TNF-α to overcome resistance to ICB treatment.
RESUMO
Circadian homeostasis in mammals is a key intrinsic mechanism for responding to the external environment. However, the interplay between circadian rhythms and the tumor microenvironment (TME) and its influence on metastasis are still unclear. Here, in patients with colorectal cancer (CRC), disturbances of circadian rhythm and the accumulation of monocytes and granulocytes were closely related to metastasis. Moreover, dysregulation of circadian rhythm promoted lung metastasis of CRC by inducing the accumulation of myeloid-derived suppressor cells (MDSCs) and dysfunctional CD8+ T cells in the lungs of mice. Also, gut microbiota and its derived metabolite taurocholic acid (TCA) contributed to lung metastasis of CRC by triggering the accumulation of MDSCs in mice. Mechanistically, TCA promoted glycolysis of MDSCs epigenetically by enhancing mono-methylation of H3K4 of target genes and inhibited CHIP-mediated ubiquitination of PDL1. Our study links the biological clock with MDSCs in the TME through gut microbiota/metabolites in controlling the metastatic spread of CRC, uncovering a systemic mechanism for cancer metastasis.
Assuntos
Relógios Circadianos , Microbioma Gastrointestinal , Células Supressoras Mieloides , Animais , Camundongos , Células Supressoras Mieloides/metabolismo , Humanos , Metástase Neoplásica , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Camundongos Endogâmicos C57BL , Masculino , Microambiente Tumoral , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/metabolismo , Feminino , Camundongos Endogâmicos BALB C , Linhagem Celular TumoralRESUMO
Macrophages plays a vital role in the development of non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC), but the polarization of macrophages was not consistent in previous reports and the contribution of hepatocytes to macrophage polarization is not clear. Here, we show that in clinical NASH and HCC samples, impaired Dicer activity was common and correlated with increased M1-like macrophages. Mice with Dicer deletion in hepatocytes could induce macrophages M1 polarization either in the development of NASH under high fat diet feeding, or in the carcinogenesis of HCC after DEN treatment. In hepatic cells, Dicer deletion delivered distinct lipid profile and increased lipid oxidation. Mechanically, Dicer deletion caused declined miR-192-3p and increased IGF2 in hepatocytes. Restoring miR-192-3p could suppress IGF2 and inhibit macrophage infiltration in the liver tissue, as well as reduce the lipid de novo synthesis and peroxidation. Overall, our data highlights the central role of Dicer-associated miR-192-3p in the etiopathogenesis of macrophage M1 polarization in NASH and HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Hepatócitos , Lipídeos , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologiaRESUMO
Background: Cancer-associated fibroblasts (CAFs) are principal constituents of the tumor microenvironment (TME) and play a critical role in tumor progression. The CXCL12/CXCR4 axis regulates multiple facets of the TME. The aim of this study was to determine the relationship between CXCL12 expression in CAFs and the malignant progression of gastric cancer (GC). Methods: In the GEO (Gene Expression Omnibus) database, we performed transcriptome analysis on paired gastric cancer RNA sequencing samples, and scRNA analysis was performed on advanced malignant GC samples from the scRNA sequencing data set. Fibroblast cells were co-cultured with GC cells, and invasion, migration, epithelial-mesenchymal transformation (EMT) were determined. After blocking the expression of fibroblast CXCL12, cells were co-cultured with a GC cell line. Detection of GC cell line invasion, migration, EMT and CXCR4, Wnt5a and ß-Catenin expression levels was performed. Primary CAFs and gastric normal fibroblasts were isolated and CXCL12 mRNA and protein expression were determined. In addition, a cohort of 285 GC cases was established, protein expression was evaluated immunohistochemically, and prognostic results were analyzed. Results: GC transcriptome analysis suggested that cytokine-cytokine receptor interaction and the Wnt signaling pathway in GC tissues were significantly up-regulated. scRNA analysis of advanced malignant GC samples showed that severe intestinal metaplasia (SIM) in GC specimens of different malignant grades had obvious fibroblast clusters compared to non-atrophic gastritis (NAG) and early gastric cancer (EGC). In the SIM group, fibroblast cluster, CXCL12, CXCR4, and Wnt5a were overexpressed. Co-culturing with fibroblast cells significantly increased the invasion, migration, and EMT of GC cells, and blocking CXCL12 in CAFs disturbed the expression of Wnt5a and ß-catenin. In our cohort of GC patients, high CXCL12 expression in CAFs significantly correlated with histological grade (P = 0.012) and TNM stage (P = 0.014), as well as with poor overall survival (p = 0.0107). Conclusion: High expression of CXCL12 in CAFs in a GC microenvironment can affect the migration, invasion, and EMT of GC cells. Furthermore, it can cause poor prognosis in patients with GC.
RESUMO
BACKGROUND: SATB2 is a diagnostic biomarker and a favourable prognostic marker for colorectal cancer [CRC], but its role in colitis and colitis-associated colorectal cancer [CAC] is unknown. METHODS: Colitis was induced in intestinal epithelial-specific Satb2 knockout [Satb2 IEC-KO] and control mice using dextran sulphate sodium [DSS]. RNA-seq analysis was performed on colonic tissues, and 16S rDNA-Seq on faecal bacterial DNA from Satb2 IEC-KO and control mice. Immunohistochemistry and flow cytometry were performed to reveal the proportions of different immune cells. Chromatin immunoprecipitation [ChIP] and luciferase reporter were applied to show the regulatory role of SATB2 on SLC26A3, of which the Cl-/HCO3- exchange activity was measured fluorometrically by the pHi-sensitive dye. Bacteroides were detected by fluorescence in situ hybridisation [FISH] on colonic tissue. RESULTS: Satb2 IEC-KO mice suffered from intestinal epithelial damage spontaneously, and developed more severe colitis and CAC. The expression of SLC26A3 correlated well with SATB2 revealed by RNA-seq and The Cancer Genome Atlas [TCGA] data, and was governed by SATB2 confirmed by ChIP and luciferase reporter experiments. Decreased intestinal flora diversity was seen in Satb2 IEC-KO mice. Bacteroides were more abundant and could colonise into the inner layer of colonic mucosa in Satb2 IEC-KO mice. Faecal microbiome transplantation from Satb2 IEC-KO mice aggravated colitis and M1 macrophages infiltration. CONCLUSIONS: SATB2 plays a vital role in maintaining intestinal homeostasis, and its deficiency promotes the development of colitis and CAC by influencing the intestinal luminal environment and gut flora.