Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 28(R2): R151-R161, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31411675

RESUMO

High blood pressure (BP) remains the major heritable and modifiable risk factor for cardiovascular disease. Persistent high BP, or hypertension, is a complex trait with both genetic and environmental interactions. Despite swift advances in genomics, translating new discoveries to further our understanding of the underlying molecular mechanisms remains a challenge. More than 500 loci implicated in the regulation of BP have been revealed by genome-wide association studies (GWAS) in 2018 alone, taking the total number of BP genetic loci to over 1000. Even with the large number of loci now associated to BP, the genetic variance explained by all loci together remains low (~5.7%). These genetic associations have elucidated mechanisms and pathways regulating BP, highlighting potential new therapeutic and drug repurposing targets. A large proportion of the BP loci were discovered and reported simultaneously by multiple research groups, creating a knowledge gap, where the reported loci to date have not been investigated in a harmonious way. Here, we review the BP-associated genetic variants reported across GWAS studies and investigate their potential impact on the biological systems using in silico enrichment analyses for pathways, tissues, gene ontology and genetic pleiotropy.


Assuntos
Pressão Sanguínea/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Hipertensão/genética , Animais , Ontologia Genética , Loci Gênicos , Pleiotropia Genética , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Fatores de Risco , Software
2.
J Intern Med ; 290(6): 1130-1152, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34166551

RESUMO

Essential hypertension is a complex trait where the underlying aetiology is not completely understood. Left untreated it increases the risk of severe health complications including cardiovascular and renal disease. It is almost 15 years since the first genome-wide association study for hypertension, and after a slow start there are now over 1000 blood pressure (BP) loci explaining ∼6% of the single nucleotide polymorphism-based heritability. Success in discovery of hypertension genes has provided new pathological insights and drug discovery opportunities and translated to the development of BP genetic risk scores (GRSs), facilitating population disease risk stratification. Comparing highest and lowest risk groups shows differences of 12.9 mm Hg in systolic-BP with significant differences in risk of hypertension, stroke, cardiovascular disease and myocardial infarction. GRSs are also being trialled in antihypertensive drug responses. Drug targets identified include NPR1, for which an agonist drug is currently in clinical trials. Identification of variants at the PHACTR1 locus provided insights into regulation of EDN1 in the endothelin pathway, which is aiding the development of endothelin receptor EDNRA antagonists. Drug re-purposing opportunities, including SLC5A1 and canagliflozin (a type-2 diabetes drug), are also being identified. In this review, we present key studies from the past, highlight current avenues of research and look to the future focusing on gene discovery, epigenetics, gene-environment interactions, GRSs and drug discovery. We evaluate limitations affecting BP genetics, including ancestry bias and discuss streamlining of drug target discovery and applications for treating and preventing hypertension, which will contribute to tailored precision medicine for patients.


Assuntos
Hipertensão , Infarto do Miocárdio , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/genética , Infarto do Miocárdio/tratamento farmacológico , Polimorfismo de Nucleotídeo Único
3.
Front Genet ; 11: 350, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351543

RESUMO

Genome-wide association studies (GWAS) have revealed thousands of genetic loci that underpin the complex biology of many human traits. However, the strength of GWAS - the ability to detect genetic association by linkage disequilibrium (LD) - is also its limitation. Whilst the ever-increasing study size and improved design have augmented the power of GWAS to detect effects, differentiation of causal variants or genes from other highly correlated genes associated by LD remains the real challenge. This has severely hindered the biological insights and clinical translation of GWAS findings. Although thousands of disease susceptibility loci have been reported, causal genes at these loci remain elusive. Machine learning (ML) techniques offer an opportunity to dissect the heterogeneity of variant and gene signals in the post-GWAS analysis phase. ML models for GWAS prioritization vary greatly in their complexity, ranging from relatively simple logistic regression approaches to more complex ensemble models such as random forests and gradient boosting, as well as deep learning models, i.e., neural networks. Paired with functional validation, these methods show important promise for clinical translation, providing a strong evidence-based approach to direct post-GWAS research. However, as ML approaches continue to evolve to meet the challenge of causal gene identification, a critical assessment of the underlying methodologies and their applicability to the GWAS prioritization problem is needed. This review investigates the landscape of ML applications in three parts: selected models, input features, and output model performance, with a focus on prioritizations of complex disease associated loci. Overall, we explore the contributions ML has made towards reaching the GWAS end-game with consequent wide-ranging translational impact.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA