Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Conserv Biol ; 37(2): e14031, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36349513

RESUMO

Biodiversity offsets aim to counterbalance the residual impacts of development on species and ecosystems. Guidance documents explicitly recommend that biodiversity offset actions be located close to the location of impact because of higher potential for similar ecological conditions, but allowing greater spatial flexibility has been proposed. We examined the circumstances under which offsets distant from the impact location could be more likely to achieve no net loss or provide better ecological outcomes than offsets close to the impact area. We applied a graphical model for migratory shorebirds in the East Asian-Australasian Flyway as a case study to explore the problems that arise when incorporating spatial flexibility into offset planning. Spatially flexible offsets may alleviate impacts more effectively than local offsets; however, the risks involved can be substantial. For our case study, there were inadequate data to make robust conclusions about the effectiveness and equivalence of distant habitat-based offsets for migratory shorebirds. Decisions around offset placement should be driven by the potential to achieve equivalent ecological outcomes; however, when considering more distant offsets, there is a need to evaluate the likely increased risks alongside the potential benefits. Although spatially flexible offsets have the potential to provide more cost-effective biodiversity outcomes and more cobenefits, our case study showed the difficulty of demonstrating these benefits in practice and the potential risks that need to be considered to ensure effective offset placement.


Estudio de los riesgos y beneficios de la flexibilidad en la ubicación de compensación de la biodiversidad en el estudio de caso de aves costeras migratorias Resumen Las compensaciones de la biodiversidad buscan contrabalancear el impacto residual que tiene el desarrollo sobre las especies y los ecosistemas. Los documentos guía recomiendan explícitamente que las acciones de estas compensaciones estén ubicadas cerca del lugar del impacto debido al potencial elevado de que haya condiciones ecológicas similares, aunque ya hay propuestas de una mayor flexibilidad espacial. Analizamos las circunstancias bajo las cuales las compensaciones alejadas del lugar de impacto tendrían mayor probabilidad de lograr pérdidas netas nulas o de proporcionar mejores resultados ecológicos que las compensaciones cercanas al área de impacto. Aplicamos un modelo gráfico para las aves costeras migratorias en el corredor aéreo asiático-australasiático del este como estudio de caso para estudiar los problemas que surgen cuando se incorpora la flexibilidad espacial a la planeación de las compensaciones. Las compensaciones espacialmente flexibles pueden mitigar los impactos más efectivamente que las compensaciones locales; sin embargo, los riesgos que esto involucra pueden ser considerables. En nuestro estudio de caso hubo datos insuficientes para concluir contundentemente sobre la efectividad y equivalencia de las compensaciones basadas en los hábitats distantes para las aves costeras migratorias. Las decisiones en torno a la ubicación de las compensaciones deberían estar impulsadas por el potencial para obtener resultados ecológicos equivalentes; sin embargo, al considerar compensaciones más alejadas, existe la necesidad de evaluar el incremento probable de riesgos junto a los beneficios potenciales. Aunque las compensaciones espacialmente flexibles tienen el potencial para proporcionar resultados más rentables y más beneficios colaterales, nuestro estudio de caso mostró la dificultad para demostrar estos beneficios en la práctica y los riesgos potenciales que necesitan considerarse para asegurar una ubicación efectiva de las compensaciones.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Medição de Risco
2.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210314, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-35965457

RESUMO

Mathematical modelling is used during disease outbreaks to compare control interventions. Using multiple models, the best method to combine model recommendations is unclear. Existing methods weight model projections, then rank control interventions using the combined projections, presuming model outputs are directly comparable. However, the way each model represents the epidemiological system will vary. We apply electoral vote-processing rules to combine model-generated rankings of interventions. Combining rankings of interventions, instead of combining model projections, avoids assuming that projections are comparable as all comparisons of projections are made within each model. We investigate four rules: First-past-the-post, Alternative Vote (AV), Coombs Method and Borda Count. We investigate rule sensitivity by including models that favour only one action or including those that rank interventions randomly. We investigate two case studies: the 2014 Ebola outbreak in West Africa (37 compartmental models) and a hypothetical foot-and-mouth disease outbreak in UK (four individual-based models). The Coombs Method was least susceptible to adding models that favoured a single action, Borda Count and AV were most susceptible to adding models that ranked interventions randomly. Each rule chose the same intervention as when ranking interventions by mean projections, suggesting that combining rankings provides similar recommendations with fewer assumptions about model comparability. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.


Assuntos
Surtos de Doenças , Modelos Teóricos , Animais , Surtos de Doenças/prevenção & controle
3.
Environ Manage ; 67(2): 277-290, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33399938

RESUMO

Globally, many river systems are under stress due to overconsumption of water. Governments have responded with programmes to deliver environmental water to improve environmental outcomes. Although such programmes are essential, they may not be sufficient to achieve all desired environmental outcomes. The benefits of environmental water allocation may be improved using 'complementary measures', which are non-flow-based actions, such as infrastructure works, vegetation management and pest control. The value of complementary measures is recognised globally, but their ecological benefits are rarely well understood, either because there is limited experience with their application, or the importance of context- and location-specific factors make it difficult to generalise benefits. In this study, we developed an approach to evaluate complementary measures at different levels of detail as a mechanism to aid decision-making. For systems that require a rapid, high-level evaluation, we propose a score-based multi-criteria benefit assessment module. If more ecological detail is necessary, we outline a method based on conceptual models, expert elicitation and probability assessment. These results are used to populate a cumulative benefit assessment tool. The tool evaluates the benefits of proposed measures in the wider context by including variables such as flow, dependence on ongoing maintenance and additional ecological values. We illustrate our approach through application to the Murray-Darling Basin, Australia. As many water recovery programmes mature into their evaluation phases, there is an increasing need to evaluate the ecological benefits of including complementary measures in the toolkit available to policy makers.


Assuntos
Conservação dos Recursos Naturais , Rios , Austrália , Modelos Teóricos
4.
J Environ Manage ; 246: 484-495, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31200182

RESUMO

Managing and monitoring invasive alien species (IAS) is costly, and because resources are limited, prioritization decisions are required for planning and management. We present findings on plant pest prioritization for 63 established invader species of natural and grazing ecosystems of Queensland, Australia. We used an expert elicitation approach to assess risk (species occurrence, spread, and impact) and feasibility of control for each IAS. We elicit semi-quantitative responses from diverse expert stakeholders to score IAS on three management approaches (biocontrol, chemical and mechanical) in relation to cost, effectiveness and practicality, and incorporate uncertainty in expert inputs and model outputs. In the process, we look for promising management opportunities as well as seek general trends across species' ecological groups and management methods. Stakeholders were cautiously optimistic about the feasibility of managing IAS. Taking into consideration all factors, the overall feasibility of control was uncorrelated with the stakeholders' level of confidence. However, within individual management criterion, positive trend was observed for the same bivariate traits for chemical control, and negative trends for biocontrol and mechanical controls. Utility and confidence in IAS management options were in the order: chemical > biocontrol = mechanical, with practicality and effectiveness being the main driver components. Management feasibility differed significantly between IAS life forms but not between habitats invaded. Lastly, we combined IAS risk assessment and management feasibility scores to create a risk matrix to guide policy goals (i.e. eradication, spread containment, protection of sensitive sites, targeted control, site management, monitoring, and limited action). The matrix identifies promising species to target for each of these policy outcomes. Overall, our general approach illustrates (i) the importance of understanding the feasibility of IAS control actions and the factors that drive it, and (ii) demonstrates how quantifying management feasibility can be used to enhance traditional risk assessment rankings to improve policy outcomes.


Assuntos
Ecossistema , Espécies Introduzidas , Austrália , Estudos de Viabilidade , Queensland
5.
Conserv Biol ; 32(1): 35-49, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28574183

RESUMO

In 2014, the Fish and Wildlife Service (FWS) and National Marine Fisheries Service announced a new policy interpretation for the U.S. Endangered Species Act (ESA). According to the act, a species must be listed as threatened or endangered if it is determined to be threatened or endangered in a significant portion of its range (SPR). The 2014 policy seeks to provide consistency by establishing that a portion of the range should be considered significant if the associated individuals' "removal would cause the entire species to become endangered or threatened." We reviewed 20 quantitative techniques used to assess whether a portion of a species' range is significant according to the new guidance. Our assessments are based on the 3R criteria-redundancy (i.e., buffering from catastrophe), resiliency (i.e., ability to withstand stochasticity), and representation (i.e., ability to evolve)-that the FWS uses to determine if a species merits listing. We identified data needs for each quantitative technique and considered which methods could be implemented given the data limitations typical of rare species. We also identified proxies for the 3Rs that may be used with limited data. To assess potential data availability, we evaluated 7 example species by accessing data in their species status assessments, which document all the information used during a listing decision. In all species, an SPR could be evaluated with at least one metric for each of the 3Rs robustly or with substantial assumptions. Resiliency assessments appeared most constrained by limited data, and many species lacked information on connectivity between subpopulations, genetic variation, and spatial variability in vital rates. These data gaps will likely make SPR assessments for species with complex life histories or that cross national boundaries difficult. Although we reviewed techniques for the ESA, other countries require identification of significant areas and could benefit from this research.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Animais , Peixes , Políticas
6.
J Environ Manage ; 215: 294-304, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29574207

RESUMO

Under limited time and resources, ecological managers are under increasing pressure to demonstrate tangible impact of monitoring activities. Value of Information (VOI) has been advocated as an ideal tool to evaluate whether more data is required to improve expected management outcomes. Yet, despite several recent works explaining its value, VOI remains seldom used in practice. Here we provide an example of a successful ecological application of VOI. We apply VOI to a novel multi-objective freshwater management problem and show how to make the best use of expert data through a robust sensitivity analysis. Unlike previous VOI approaches, our analysis provides statistical confidence to our recommendations. We apply our approach to the recovery of Moira grass (Pseudoraphis spinescens) plains, a threatened vegetation community at the Ramsar-listed Barmah Forest on the Murray River, Australia. Working closely with managers, we discovered that although many threats may impede Moira grass recovery, reducing grazing pressure and applying ideal depth and duration of flooding were most likely to lead to recovery. We found that learning from monitoring can significantly increase the existing extent of Moira grass, although these gains are modest compared to immediate management action. Our study shows how VOI can be used to demonstrate efficient use of limited environmental water to maximise ecological impact and increase transparency when making monitoring or management decisions. More broadly, the study methods will be of interest to any environmental manager who needs to prioritise monitoring and evaluation activities subject to a limited research budget. At a time where researchers and managers are asked to be more accountable for their decision-making, VOI provides a very accessible tool that can speed up the decision of whether to wait and collect more data or act immediately despite uncertainty.


Assuntos
Conservação dos Recursos Naturais , Tomada de Decisões , Água Doce , Austrália , Meio Ambiente , Incerteza
7.
Conserv Biol ; 31(3): 646-656, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27641210

RESUMO

Conserving migratory species requires protecting connected habitat along the pathways they travel. Despite recent improvements in tracking animal movements, migratory connectivity remains poorly resolved at a population level for the vast majority of species, thus conservation prioritization is hampered. To address this data limitation, we developed a novel approach to spatial prioritization based on a model of potential connectivity derived from empirical data on species abundance and distance traveled between sites during migration. We applied the approach to migratory shorebirds of the East Asian-Australasian Flyway. Conservation strategies that prioritized sites based on connectivity and abundance metrics together maintained larger populations of birds than strategies that prioritized sites based only on abundance metrics. The conservation value of a site therefore depended on both its capacity to support migratory animals and its position within the migratory pathway; the loss of crucial sites led to partial or total population collapse. We suggest that conservation approaches that prioritize sites supporting large populations of migrants should, where possible, also include data on the spatial arrangement of sites.


Assuntos
Migração Animal , Conservação dos Recursos Naturais , Incerteza , Animais , Aves , Ecossistema
9.
Biol Conserv ; 214: 147-155, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29200466

RESUMO

In many parts of the world, conservation successes or global anthropogenic changes have led to increasing native species populations that then compete with human resource use. In the Orkney Islands, Scotland, a 60-fold increase in Greylag Goose Anser anser numbers over 24 years has led to agricultural damages and culling attempts that have failed to prevent population increase. To address uncertainty about why populations have increased, we combined empirical modelling of possible drivers of Greylag Goose population change with expert-elicited benefits of alternative management actions to identify whether to learn versus act immediately to reduce damages by geese. We built linear mixed-effects models relating annual goose densities on farms to land-use and environmental covariates and estimated AICc model weights to indicate relative support for six hypotheses of change. We elicited from experts the expected likelihood that one of six actions would achieve an objective of halting goose population growth, given each hypothesis for population change. Model weights and expected effects of actions were combined in Value of Information analysis (VoI) to quantify the utility of resolving uncertainty in each hypothesis through adaptive management and monitoring. The action with the highest expected value under existing uncertainty was to increase the extent of low quality habitats, whereas assuming equal hypothesis weights changed the best action to culling. VoI analysis showed that the value of learning to resolve uncertainty in any individual hypothesis for goose population change was low, due to high support for a single hypothesis of change. Our study demonstrates a two-step framework that learns about the most likely drivers of change for an over-abundant species, and uses this knowledge to weight the utility of alternative management actions. Our approach helps inform which strategies might best be implemented to resolve uncertainty when there are competing hypotheses for change and competing management choices.

10.
Theor Popul Biol ; 109: 44-53, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26948289

RESUMO

Increasing the colonization rate of metapopulations can improve persistence, but can also increase exposure to threats. To make good decisions, managers must understand whether increased colonization is beneficial or detrimental to metapopulation persistence. While a number of studies have examined interactions between metapopulations, colonization, and threats, they have assumed that threat dynamics respond linearly to changes in colonization. Here, we determined when to increase colonization while explicitly accounting for non-linear dependencies between a metapopulation and its threats. We developed patch occupancy metapopulation models for species susceptible to abiotic, generalist, and specialist threats and modeled the total derivative of the equilibrium proportion of patches occupied by each metapopulation with respect to the colonization rate. By using the total derivative, we developed a rule for determining when to increase metapopulation colonization. This rule was applied to a simulated metapopulation where the dynamics of each threat responded to increased colonization following a power function. Before modifying colonization, we show that managers must understand: (1) whether a metapopulation is susceptible to a threat; (2) the type of threat acting on a metapopulation; (3) which component of threat dynamics might depend on colonization, and; (4) the likely response of a threat-dependent variable to changes in colonization. The sensitivity of management decisions to these interactions increases uncertainty in conservation planning decisions.


Assuntos
Ecossistema , Modelos Biológicos , Dinâmica Populacional , Incerteza
11.
Proc Biol Sci ; 282(1808): 20142984, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25972463

RESUMO

Implementation of adaptation actions to protect biodiversity is limited by uncertainty about the future. One reason for this is the fear of making the wrong decisions caused by the myriad future scenarios presented to decision-makers. We propose an adaptive management (AM) method for optimally managing a population under uncertain and changing habitat conditions. Our approach incorporates multiple future scenarios and continually learns the best management strategy from observations, even as conditions change. We demonstrate the performance of our AM approach by applying it to the spatial management of migratory shorebird habitats on the East Asian-Australasian flyway, predicted to be severely impacted by future sea-level rise. By accounting for non-stationary dynamics, our solution protects 25,000 more birds per year than the current best stationary approach. Our approach can be applied to many ecological systems that require efficient adaptation strategies for an uncertain future.


Assuntos
Charadriiformes/fisiologia , Conservação dos Recursos Naturais/métodos , Tomada de Decisões , Ecossistema , Migração Animal , Animais , Biodiversidade , Mudança Climática , Incerteza
12.
Glob Chang Biol ; 21(11): 3917-30, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26179346

RESUMO

Climate change is a major threat to global biodiversity, and its impacts can act synergistically to heighten the severity of other threats. Most research on projecting species range shifts under climate change has not been translated to informing priority management strategies on the ground. We develop a prioritization framework to assess strategies for managing threats to biodiversity under climate change and apply it to the management of invasive animal species across one-sixth of the Australian continent, the Lake Eyre Basin. We collected information from key stakeholders and experts on the impacts of invasive animals on 148 of the region's most threatened species and 11 potential strategies. Assisted by models of current distributions of threatened species and their projected distributions, experts estimated the cost, feasibility, and potential benefits of each strategy for improving the persistence of threatened species with and without climate change. We discover that the relative cost-effectiveness of invasive animal control strategies is robust to climate change, with the management of feral pigs being the highest priority for conserving threatened species overall. Complementary sets of strategies to protect as many threatened species as possible under limited budgets change when climate change is considered, with additional strategies required to avoid impending extinctions from the region. Overall, we find that the ranking of strategies by cost-effectiveness was relatively unaffected by including climate change into decision-making, even though the benefits of the strategies were lower. Future climate conditions and impacts on range shifts become most important to consider when designing comprehensive management plans for the control of invasive animals under limited budgets to maximize the number of threatened species that can be protected.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais/métodos , Espécies Introduzidas , Animais , Austrália , Conservação dos Recursos Naturais/economia , Análise Custo-Benefício , Espécies em Perigo de Extinção , Modelos Biológicos
13.
Conserv Biol ; 29(2): 525-36, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25362843

RESUMO

Conservation decision tools based on cost-effectiveness analysis are used to assess threat management strategies for improving species persistence. These approaches rank alternative strategies by their benefit to cost ratio but may fail to identify the optimal sets of strategies to implement under limited budgets because they do not account for redundancies. We devised a multiobjective optimization approach in which the complementarity principle is applied to identify the sets of threat management strategies that protect the most species for any budget. We used our approach to prioritize threat management strategies for 53 species of conservation concern in the Pilbara, Australia. We followed a structured elicitation approach to collect information on the benefits and costs of implementing 17 different conservation strategies during a 3-day workshop with 49 stakeholders and experts in the biodiversity, conservation, and management of the Pilbara. We compared the performance of our complementarity priority threat management approach with a current cost-effectiveness ranking approach. A complementary set of 3 strategies: domestic herbivore management, fire management and research, and sanctuaries provided all species with >50% chance of persistence for $4.7 million/year over 20 years. Achieving the same result cost almost twice as much ($9.71 million/year) when strategies were selected by their cost-effectiveness ranks alone. Our results show that complementarity of management benefits has the potential to double the impact of priority threat management approaches.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Análise Custo-Benefício , Austrália Ocidental
14.
Conserv Biol ; 28(3): 646-53, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24476155

RESUMO

Policy documents advocate that managers should keep their options open while planning to protect coastal ecosystems from climate-change impacts. However, the actual costs and benefits of maintaining flexibility remain largely unexplored, and alternative approaches for decision making under uncertainty may lead to better joint outcomes for conservation and other societal goals. For example, keeping options open for coastal ecosystems incurs opportunity costs for developers. We devised a decision framework that integrates these costs and benefits with probabilistic forecasts for the extent of sea-level rise to find a balance between coastal ecosystem protection and moderate coastal development. Here, we suggest that instead of keeping their options open managers should incorporate uncertain sea-level rise predictions into a decision-making framework that evaluates the benefits and costs of conservation and development. In our example, based on plausible scenarios for sea-level rise and assuming a risk-neutral decision maker, we found that substantial development could be accommodated with negligible loss of environmental assets. Characterization of the Pareto efficiency of conservation and development outcomes provides valuable insight into the intensity of trade-offs between development and conservation. However, additional work is required to improve understanding of the consequences of alternative spatial plans and the value judgments and risk preferences of decision makers and stakeholders.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/economia , Tomada de Decisões , Ecossistema , Modelos Teóricos
15.
Cell Rep Med ; 3(9): 100739, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36075216

RESUMO

Age is the strongest determinant of COVID-19 mortality, and over 2 billion people have received primary series vaccination with BNT162b2 (mRNA) or ChAdOx1 (adenoviral vector). However, the profile of sustained vaccine immunogenicity in older people is unknown. Here, we determine spike-specific humoral and cellular immunity to 8 months following BNT162b2 or ChAdOx1 in 245 people aged 80-98 years. Vaccines are strongly immunogenic, with antibodies retained in every donor, while titers fall to 23%-26% from peak. Peak immunity develops rapidly with standard interval BNT162b2, although antibody titers are enhanced 3.7-fold with extended interval. Neutralization of ancestral variants is superior following BNT162b2, while neutralization of Omicron is broadly negative. Conversely, cellular responses are stronger following ChAdOx1 and are retained to 33%-60% of peak with all vaccines. BNT162b2 and ChAdOx1 elicit strong, but differential, sustained immunogenicity in older people. These data provide a baseline to assess optimal booster regimen in this vulnerable age group.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Idoso , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Imunogenicidade da Vacina , RNA Mensageiro
16.
Nat Commun ; 10(1): 3570, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395891

RESUMO

With inadequate resources to manage the threats facing biodiversity worldwide, achieving projected management outcomes is critical for efficient resource allocation and species recovery. Despite this, conservation plans to mitigate threats rarely articulate the likelihood of management success. Here we develop a general value of information approach to quantify the impact of uncertainty on 20 threatening processes affecting 976 listed species and communities. To our knowledge, this is the most comprehensive quantification of the impacts of uncertainty on threat management. We discover that, on average, removing uncertainty about management effectiveness could triple the gain in persistence achieved by managing under current uncertainty. Management of fire, invasive animals and a plant pathogen are most impeded by uncertainty; management of invasive plants is least impacted. Our results emphasise the tremendous importance of reducing uncertainty about species responses to management, and show that failure to consider management effectiveness wastes resources and impedes species recovery.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Ecologia/métodos , Incerteza , Animais , Conservação dos Recursos Naturais/economia , Ecologia/economia , Incêndios , Modelos Teóricos , Plantas , Alocação de Recursos
17.
PLoS One ; 14(6): e0218093, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31194779

RESUMO

Uniting diverse stakeholders through communication, education or building a collaborative 'common vision' for biodiversity management is a recommended approach for enabling effective conservation in regions with multiple uses. However, socially focused strategies such as building a collaborative vision can require sharing scarce resources (time and financial resources) with the on-ground management actions needed to achieve conservation outcomes. Here we adapt current prioritisation tools to predict the likely return on the financial investment of building a stakeholder-led vision along with a portfolio of on-ground management strategies. Our approach brings together and analyses expert knowledge to estimate the cost-effectiveness of a common vision strategy and on-ground management strategies, before any investments in these strategies are made. We test our approach in an intensively-used Australian biodiversity hotspot with 179 threatened or at-risk species. Experts predicted that an effective stakeholder vision for the region would have a relatively low cost and would significantly increase the feasibility of on-ground management strategies. As a result, our analysis indicates that a common vision is likely to be a cost-effective investment, increasing the expected persistence of threatened species in the region by 9 to 52%, depending upon the strategies implemented. Our approach can provide the maximum budget that is worth investing in building a common vision or another socially focused strategy for building support for on-ground conservation actions. The approach can assist with decisions about whether and how to allocate scarce resources amongst social and ecological actions for biodiversity conservation in other regions worldwide.


Assuntos
Conservação dos Recursos Naturais/economia , Análise Custo-Benefício/economia , Animais , Austrália , Biodiversidade , Orçamentos/métodos , Tomada de Decisões , Ecologia/economia , Espécies em Perigo de Extinção/economia , Investimentos em Saúde/economia , Conhecimento
18.
Ecol Evol ; 8(1): 493-508, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321888

RESUMO

Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance that comparative analyses are colored by model details rather than general principles.

19.
PLoS One ; 12(7): e0180982, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686651

RESUMO

Environmental impact assessment (EIA) is used globally to manage the impacts of development projects on the environment, so there is an imperative to demonstrate that it can effectively identify risky projects. However, despite the widespread use of quantitative predictive risk models in areas such as toxicology, ecosystem modelling and water quality, the use of predictive risk tools to assess the overall expected environmental impacts of major construction and development proposals is comparatively rare. A risk-based approach has many potential advantages, including improved prediction and attribution of cause and effect; sensitivity analysis; continual learning; and optimal resource allocation. In this paper we investigate the feasibility of using a Bayesian belief network (BBN) to quantify the likelihood and consequence of non-compliance of new projects based on the occurrence probabilities of a set of expert-defined features. The BBN incorporates expert knowledge and continually improves its predictions based on new data as it is collected. We use simulation to explore the trade-off between the number of data points and the prediction accuracy of the BBN, and find that the BBN could predict risk with 90% accuracy using approximately 1000 data points. Although a further pilot test with real project data is required, our results suggest that a BBN is a promising method to monitor overall risks posed by development within an existing EIA process given a modest investment in data collection.


Assuntos
Meio Ambiente , Monitoramento Ambiental/estatística & dados numéricos , Gestão de Riscos/estatística & dados numéricos , Arquitetura/ética , Austrália , Teorema de Bayes , Ecossistema , Monitoramento Ambiental/métodos , Humanos , Mineração/ética , Risco , Voo Espacial/ética , Meios de Transporte/ética , Gerenciamento de Resíduos/ética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA