Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 105(22): 7833-8, 2008 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-18509062

RESUMO

Storage of energy as triglyceride in large adipose-specific lipid droplets is a fundamental need in all mammals. Efficient sequestration of fat in adipocytes also prevents fatty acid overload in skeletal muscle and liver, which can impair insulin signaling. Here we report that the Cide domain-containing protein Cidea, previously thought to be a mitochondrial protein, colocalizes around lipid droplets with perilipin, a regulator of lipolysis. Cidea-GFP greatly enhances lipid droplet size when ectopically expressed in preadipocytes or COS cells. These results explain previous findings showing that depletion of Cidea with RNAi markedly elevates lipolysis in human adipocytes. Like perilipin, Cidea and the related lipid droplet protein Cidec/FSP27 are controlled by peroxisome proliferator-activated receptor gamma (PPARgamma). Treatment of lean or obese mice with the PPARgamma agonist rosiglitazone markedly up-regulates Cidea expression in white adipose tissue (WAT), increasing lipid deposition. Strikingly, in both omental and s.c. WAT from BMI-matched obese humans, expression of Cidea, Cidec/FSP27, and perilipin correlates positively with insulin sensitivity (HOMA-IR index). Thus, Cidea and other lipid droplet proteins define a novel, highly regulated pathway of triglyceride deposition in human WAT. The data support a model whereby failure of this pathway results in ectopic lipid accumulation, insulin resistance, and its associated comorbidities in humans.


Assuntos
Tecido Adiposo Branco/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Resistência à Insulina , Triglicerídeos/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo Branco/citologia , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/análise , Proteínas Reguladoras de Apoptose/genética , Índice de Massa Corporal , Proteínas de Transporte , Humanos , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Obesidade/metabolismo , PPAR gama/agonistas , PPAR gama/genética , PPAR gama/metabolismo , Perilipina-1 , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Rosiglitazona , Tiazolidinedionas/farmacologia
2.
Proc Natl Acad Sci U S A ; 103(7): 2087-92, 2006 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-16461467

RESUMO

The insulin-regulated glucose transporter GLUT4 is a key modulator of whole body glucose homeostasis, and its selective loss in adipose tissue or skeletal muscle causes insulin resistance and diabetes. Here we report an RNA interference-based screen of protein kinases expressed in adipocytes and identify four negative regulators of insulin-responsive glucose transport: the protein kinases PCTAIRE-1 (PCTK1), PFTAIRE-1 (PFTK1), IkappaB kinase alpha, and MAP4K4/NIK. Integrin-linked protein kinase was identified as a positive regulator of this process. We characterized one of these hits, MAP4K4/NIK, and found that it is unique among mitogen-activated protein (MAP) kinases expressed in cultured adipocytes in attenuating hexose transport. Remarkably, MAP4K4/NIK suppresses expression of the adipogenic transcription factors C/EBPalpha, C/EBPbeta, and PPARgamma and of GLUT4 itself in these cells. RNA interference-mediated depletion of MAP4K4/NIK early in differentiation enhances adipogenesis and triglyceride deposition, and even in fully differentiated adipocytes its loss up-regulates GLUT4. Conversely, conditions that inhibit adipogenesis such as TNF-alpha treatment or depletion of PPARgamma markedly up-regulate MAP4K4/NIK expression in cultured adipocytes. Furthermore, TNF-alpha signaling to down-regulate GLUT4 is impaired in the absence of MAP4K4/NIK, indicating that MAP4K4 expression is required for optimal TNF-alpha action. These results reveal a MAP4K4/NIK-dependent signaling pathway that potently inhibits PPARgamma-responsive gene expression, adipogenesis, and insulin-stimulated glucose transport.


Assuntos
Adipogenia/genética , Regulação da Expressão Gênica , Transportador de Glucose Tipo 4/genética , Glucose/metabolismo , PPAR gama/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Transporte Biológico , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/genética , Regulação para Baixo , Insulina/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Proteínas Serina-Treonina Quinases/genética , Supressão Genética , Fator de Necrose Tumoral alfa/farmacologia
3.
EMBO J ; 22(10): 2387-99, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12743033

RESUMO

Insulin stimulates glucose uptake in muscle and adipose cells by mobilizing intracellular membrane vesicles containing GLUT4 glucose transporter proteins to the plasma membrane. Here we show in live cultured adipocytes that intracellular membranes containing GLUT4-yellow fluorescent protein (YFP) move along tubulin-cyan fluorescent protein-labeled microtubules in response to insulin by a mechanism that is insensitive to the phosphatidylinositol 3 (PI3)-kinase inhibitor wortmannin. Insulin increased by several fold the observed frequencies, but not velocities, of long-range movements of GLUT4-YFP on microtubules, both away from and towards the perinuclear region. Genomics screens show conventional kinesin KIF5B is highly expressed in adipocytes and this kinesin is partially co-localized with perinuclear GLUT4. Dominant-negative mutants of conventional kinesin light chain blocked outward GLUT4 vesicle movements and translocation of exofacial Myc-tagged GLUT4-green fluorescent protein to the plasma membrane in response to insulin. These data reveal that insulin signaling targets the engagement or initiates the movement of GLUT4-containing membranes on microtubules via conventional kinesin through a PI3-kinase-independent mechanism. This insulin signaling pathway regulating KIF5B function appears to be required for GLUT4 translocation to the plasma membrane.


Assuntos
Adipócitos/efeitos dos fármacos , Transporte Biológico/fisiologia , Insulina/farmacologia , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Musculares , Adipócitos/citologia , Adipócitos/fisiologia , Androstadienos/farmacologia , Animais , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Transportador de Glucose Tipo 4 , Insulina/fisiologia , Membranas Intracelulares/metabolismo , Cinesinas/genética , Proteínas Luminescentes/metabolismo , Camundongos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Vesículas Transportadoras/metabolismo , Wortmanina
4.
Nature ; 420(6917): 821-4, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12490950

RESUMO

Insulin stimulates glucose uptake in muscle and adipocytes by signalling the translocation of GLUT4 glucose transporters from intracellular membranes to the cell surface. The translocation of GLUT4 may involve signalling pathways that are both independent of and dependent on phosphatidylinositol-3-OH kinase (PI(3)K). This translocation also requires the actin cytoskeleton, and the rapid movement of GLUT4 along linear tracks may be mediated by molecular motors. Here we report that the unconventional myosin Myo1c is present in GLUT4-containing vesicles purified from 3T3-L1 adipocytes. Myo1c, which contains a motor domain, three IQ motifs and a carboxy-terminal cargo domain, is highly expressed in primary and cultured adipocytes. Insulin enhances the localization of Myo1c with GLUT4 in cortical tubulovesicular structures associated with actin filaments, and this colocalization is insensitive to wortmannin. Insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane is augmented by the expression of wild-type Myo1c and inhibited by a dominant-negative cargo domain of Myo1c. A decrease in the expression of endogenous Myo1c mediated by small interfering RNAs inhibits insulin-stimulated uptake of 2-deoxyglucose. Thus, myosin Myo1c functions in a PI(3)K-independent insulin signalling pathway that controls the movement of intracellular GLUT4-containing vesicles to the plasma membrane.


Assuntos
Insulina/farmacologia , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Musculares , Miosinas/metabolismo , Células 3T3 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos/ultraestrutura , Motivos de Aminoácidos , Animais , Transporte Biológico/efeitos dos fármacos , Diferenciação Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Glucose/metabolismo , Transportador de Glucose Tipo 4 , Camundongos , Miosina Tipo I , Miosinas/química , Miosinas/genética , Fosfatidilinositol 3-Quinases/metabolismo , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA