Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 43(9): 1690-1721, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38378891

RESUMO

Mosquitoes transmit many disease-relevant flaviviruses. Efficient viral transmission to mammalian hosts requires mosquito salivary factors. However, the specific salivary components facilitating viral transmission and their mechanisms of action remain largely unknown. Here, we show that a female mosquito salivary gland-specific protein, here named A. aegypti Neutrophil Recruitment Protein (AaNRP), facilitates the transmission of Zika and dengue viruses. AaNRP promotes a rapid influx of neutrophils, followed by virus-susceptible myeloid cells toward mosquito bite sites, which facilitates establishment of local infection and systemic dissemination. Mechanistically, AaNRP engages TLR1 and TLR4 of skin-resident macrophages and activates MyD88-dependent NF-κB signaling to induce the expression of neutrophil chemoattractants. Inhibition of MyD88-NF-κB signaling with the dietary phytochemical resveratrol reduces AaNRP-mediated enhancement of flavivirus transmission by mosquitoes. These findings exemplify how salivary components can aid viral transmission, and suggest a potential prophylactic target.


Assuntos
Aedes , Zika virus , Animais , Aedes/virologia , Aedes/metabolismo , Feminino , Zika virus/fisiologia , Camundongos , Vírus da Dengue/fisiologia , Proteínas e Peptídeos Salivares/metabolismo , Mosquitos Vetores/virologia , Proteínas de Insetos/metabolismo , Células Mieloides/virologia , Células Mieloides/metabolismo , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Infecção por Zika virus/metabolismo , Dengue/transmissão , Dengue/virologia , Dengue/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética
2.
Nature ; 545(7655): 482-486, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28514450

RESUMO

Zika virus (ZIKV) remained obscure until the recent explosive outbreaks in French Polynesia (2013-2014) and South America (2015-2016). Phylogenetic studies have shown that ZIKV has evolved into African and Asian lineages. The Asian lineage of ZIKV was responsible for the recent epidemics in the Americas. However, the underlying mechanisms through which ZIKV rapidly and explosively spread from Asia to the Americas are unclear. Non-structural protein 1 (NS1) facilitates flavivirus acquisition by mosquitoes from an infected mammalian host and subsequently enhances viral prevalence in mosquitoes. Here we show that NS1 antigenaemia determines ZIKV infectivity in its mosquito vector Aedes aegypti, which acquires ZIKV via a blood meal. Clinical isolates from the most recent outbreak in the Americas were much more infectious in mosquitoes than the FSS13025 strain, which was isolated in Cambodia in 2010. Further analyses showed that these epidemic strains have higher NS1 antigenaemia than the FSS13025 strain because of an alanine-to-valine amino acid substitution at residue 188 in NS1. ZIKV infectivity was enhanced by this amino acid substitution in the ZIKV FSS13025 strain in mosquitoes that acquired ZIKV from a viraemic C57BL/6 mouse deficient in type I and II interferon (IFN) receptors (AG6 mouse). Our results reveal that ZIKV evolved to acquire a spontaneous mutation in its NS1 protein, resulting in increased NS1 antigenaemia. Enhancement of NS1 antigenaemia in infected hosts promotes ZIKV infectivity and prevalence in mosquitoes, which could have facilitated transmission during recent ZIKV epidemics.


Assuntos
Aedes/virologia , Evolução Biológica , Mosquitos Vetores/virologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Zika virus/patogenicidade , América/epidemiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Ásia/epidemiologia , Camboja/epidemiologia , Feminino , Humanos , Estágios do Ciclo de Vida , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Células Vero , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Zika virus/genética , Zika virus/isolamento & purificação , Zika virus/metabolismo , Infecção por Zika virus/epidemiologia
3.
Biologicals ; 60: 36-41, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31178277

RESUMO

JE vaccination is the most effective and economical method of preventing JE. A live attenuated JE vaccine has been widely used in many countries since 1989, playing an important role in controlling JE outbreaks. However, whether the large-scale use of the live attenuated JE vaccine will lead to the dissemination of the vaccine virus in the environment and whether reversion of the neuroattenuation of the virus will occur during the transmission process remain major concerns for some researchers. To evaluate the transmission of a live attenuated JEV vaccine in mosquitoes and hosts, JE SA14-14-2 attenuated vaccine virus was intrathoracically (i.t.) inoculated into Culex tritaeniorhynchus, a native vector. Subsequently, virus harvested from inoculated mosquitoes was inoculated into pigs, a mammalian reservoir. The virus was isolated from the pigs and passaged once again in Culex tritaeniorhynchus. The genome sequences and virulence of the passaged viruses were then investigated. While a few nucleotide substitutions occurred during passaging, there was no change in the encoded amino acids. After intracerebral (i.c.) inoculation of mice with the vaccine, no pathological effects were observed. In addition, virus virulence remained low after inoculation of suckling mouse brains. These results indicate that vaccination of individuals with the live vaccine will not result in transmission of the live SA14-14-2 vaccine virus through mosquito biting and virus amplified in pigs.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa , Vacinas contra Encefalite Japonesa/imunologia , Animais , Linhagem Celular , Cricetinae , Culex/imunologia , Culex/virologia , Encefalite Japonesa/imunologia , Encefalite Japonesa/prevenção & controle , Feminino , Vacinas contra Encefalite Japonesa/efeitos adversos , Masculino , Camundongos , Suínos , Vacinas Atenuadas
4.
Insect Sci ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37017683

RESUMO

Mosquito-borne viruses (MBVs) are a large class of viruses transmitted mainly through mosquito bites, including dengue virus, Zika virus, Japanese encephalitis virus, West Nile virus, and chikungunya virus, which pose a major threat to the health of people around the world. With global warming and extended human activities, the incidence of many MBVs has increased significantly. Mosquito saliva contains a variety of bioactive protein components. These not only enable blood feeding but also play a crucial role in regulating local infection at the bite site and the remote dissemination of MBVs as well as in remodeling the innate and adaptive immune responses of host vertebrates. Here, we review the physiological functions of mosquito salivary proteins (MSPs) in detail, the influence and the underlying mechanism of MSPs on the transmission of MBVs, and the current progress and issues that urgently need to be addressed in the research and development of MSP-based MBV transmission blocking vaccines.

5.
iScience ; 26(6): 106799, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37250798

RESUMO

The impairment of antibody-mediated immunity is a major factor associated with fatal cases of severe fever with thrombocytopenia syndrome (SFTS). By collating the clinical diagnosis reports of 30 SFTS cases, we discovered the overproliferation of monoclonal plasma cells (MCP cells, CD38+cLambda+cKappa-) in bone marrow, which has only been reported previously in multiple myeloma. The ratio of CD38+cLambda+ versus CD38+cKappa+ in SFTS cases with MCP cells was significantly higher than that in normal cases. MCP cells presented transient expression in the bone marrow, which was distinctly different from multiple myeloma. Moreover, the SFTS patients with MCP cells had higher clinical severity. Further, the overproliferation of MCP cells was also observed in SFTS virus (SFTSV)-infected mice with lethal infectious doses. Together, SFTSV infection induces transient overproliferation of monoclonal lambda-type plasma cells, which have important implications for the study of SFTSV pathogenesis, prognosis, and the rational development of therapeutics.

6.
Nat Commun ; 11(1): 260, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937766

RESUMO

Transmission from an infected mosquito to a host is an essential process in the life cycle of mosquito-borne flaviviruses. Numerous studies have demonstrated that mosquito saliva facilitates viral transmission. Here we find that a saliva-specific protein, named Aedes aegypti venom allergen-1 (AaVA-1), promotes dengue and Zika virus transmission by activating autophagy in host immune cells of the monocyte lineage. The AG6 mice (ifnar1-/-ifngr1-/-) bitten by the virus-infected AaVA-1-deficient mosquitoes present a lower viremia and prolonged survival. AaVA-1 intracellularly interacts with a dominant negative binder of Beclin-1, known as leucine-rich pentatricopeptide repeat-containing protein (LRPPRC), and releases Beclin-1 from LRPPRC-mediated sequestration, thereby enabling the initialization of downstream autophagic signaling. A deficiency in Beclin-1 reduces viral infection in mice and abolishes AaVA-1-mediated enhancement of ZIKV transmission by mosquitoes. Our study provides a mechanistic insight into saliva-aided viral transmission and could offer a potential prophylactic target for reducing flavivirus transmission.


Assuntos
Aedes/metabolismo , Autofagia , Infecções por Flavivirus/transmissão , Flavivirus/fisiologia , Proteínas de Insetos/metabolismo , Mosquitos Vetores/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Aedes/virologia , Animais , Proteína Beclina-1/deficiência , Proteína Beclina-1/metabolismo , Vírus da Dengue/fisiologia , Infecções por Flavivirus/virologia , Humanos , Proteínas de Insetos/deficiência , Proteínas de Insetos/genética , Camundongos , Mosquitos Vetores/virologia , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Proteínas e Peptídeos Salivares/deficiência , Proteínas e Peptídeos Salivares/genética , Células THP-1 , Replicação Viral , Zika virus/fisiologia
7.
Nat Microbiol ; 4(12): 2405-2415, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31527795

RESUMO

A blood meal is the primary route through which mosquitoes acquire an arbovirus infection. Blood components or their metabolites may regulate the susceptibility of mosquitoes to arboviruses. Here we report that serum iron in human blood influences dengue virus acquisition by mosquitoes. Dengue virus acquisition by Aedes aegypti was inversely correlated with the iron concentration in serum from human donors. In a mouse-mosquito acquisition model, iron supplementation reduced dengue virus prevalence and viral load, whereas neutralization of serum iron facilitated dengue virus infection in A. aegypti mosquitoes. Of note, mosquitoes feeding on iron-deficient (sideropenic) mice exhibited a higher prevalence of dengue virus. Reversal of the sideropenic status of hosts largely reduced dengue virus acquisition and infection by mosquitoes. Serum iron, rather than haem-bound iron, was utilized by the mosquito iron metabolism pathway to boost the activity of reactive oxygen species in the gut epithelium, subsequently inhibiting infection by dengue virus. On the basis of these results, a status of iron deficiency in the human population might contribute to the vectorial permissiveness to dengue virus, thereby facilitating its spread by mosquitoes.


Assuntos
Aedes/virologia , Vírus da Dengue/efeitos dos fármacos , Dengue/virologia , Ferro/sangue , Ferro/farmacologia , Mosquitos Vetores/virologia , Anemia Ferropriva , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Trato Gastrointestinal/virologia , Humanos , Ferro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio , Células Vero
8.
Cell Host Microbe ; 25(1): 101-112.e5, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30595552

RESUMO

Mosquitoes are hematophagous vectors that can acquire human viruses in their intestinal tract. Here, we define a mosquito gut commensal bacterium that promotes permissiveness to arboviruses. Antibiotic depletion of gut bacteria impaired arboviral infection of a lab-adapted Aedes aegypti mosquito strain. Reconstitution of individual cultivable gut bacteria in antibiotic-treated mosquitoes identified Serratia marcescens as a commensal bacterium critical for efficient arboviral acquisition. S. marcescens facilitates arboviral infection through a secreted protein named SmEnhancin, which digests membrane-bound mucins on the mosquito gut epithelia, thereby enhancing viral dissemination. Field Aedes mosquitoes positive for S. marcescens were more permissive to dengue virus infection than those free of S. marcescens. Oral introduction of S. marcescens into field mosquitoes that lack this bacterium rendered these mosquitoes highly susceptible to arboviruses. This study defines a commensal-driven mechanism that contributes to vector competence, and extends our understanding of multipartite interactions among hosts, the gut microbiome, and viruses.


Assuntos
Infecções por Arbovirus/veterinária , Infecções por Arbovirus/virologia , Fenômenos Fisiológicos Bacterianos , Culicidae/microbiologia , Microbioma Gastrointestinal/fisiologia , Interações Microbianas/fisiologia , Permissividade , Serratia marcescens/fisiologia , Aedes/microbiologia , Animais , Antibacterianos/farmacologia , Arbovírus , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Vírus da Dengue , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/virologia , Insetos Vetores/microbiologia , Interações Microbianas/efeitos dos fármacos , Mosquitos Vetores/microbiologia , Serratia marcescens/efeitos dos fármacos
9.
Nat Microbiol ; 1(9): 16087, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27562253

RESUMO

The arbovirus life cycle involves viral transfer between a vertebrate host and an arthropod vector, and acquisition of virus from an infected mammalian host by a vector is an essential step in this process. Here, we report that flavivirus nonstructural protein-1 (NS1), which is abundantly secreted into the serum of an infected host, plays a critical role in flavivirus acquisition by mosquitoes. The presence of dengue virus (DENV) and Japanese encephalitis virus NS1s in the blood of infected interferon-α and γ receptor-deficient mice (AG6) facilitated virus acquisition by their native mosquito vectors because the protein enabled the virus to overcome the immune barrier of the mosquito midgut. Active immunization of AG6 mice with a modified DENV NS1 reduced DENV acquisition by mosquitoes and protected mice against a lethal DENV challenge, suggesting that immunization with NS1 could reduce the number of virus-carrying mosquitoes as well as the incidence of flaviviral diseases. Our study demonstrates that flaviviruses utilize NS1 proteins produced during their vertebrate phases to enhance their acquisition by vectors, which might be a result of flavivirus evolution to adapt to multiple host environments.


Assuntos
Culicidae/virologia , Vírus da Dengue/genética , Vírus da Encefalite Japonesa (Espécie)/genética , Infecções por Flavivirus/transmissão , Flavivirus/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Linhagem Celular , Culicidae/imunologia , Drosophila , Feminino , Flavivirus/genética , Flavivirus/metabolismo , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/virologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interferon/genética , Organismos Livres de Patógenos Específicos , Proteínas não Estruturais Virais/sangue , Proteínas não Estruturais Virais/genética , Vírion
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA